miR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4

[1]  Changying Li,et al.  MiR-124 retards bladder cancer growth by directly targeting CDK4. , 2014, Acta biochimica et biophysica Sinica.

[2]  Guoqiang Zhao,et al.  MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer , 2014, Tumor Biology.

[3]  K. Mujoo,et al.  The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling , 2014, Oncogene.

[4]  Y. Kong,et al.  Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer , 2013, Molecular Cancer.

[5]  Minhua Wu,et al.  miR-124 radiosensitizes human glioma cells by targeting CDK4 , 2013, Journal of Neuro-Oncology.

[6]  Ying Chi,et al.  MicroRNA-124 Suppresses Breast Cancer Cell Growth and Motility by Targeting CD151 , 2013, Cellular Physiology and Biochemistry.

[7]  Deepa Naishadham,et al.  Cancer statistics for African Americans, 2013 , 2013, CA: a cancer journal for clinicians.

[8]  M. He,et al.  MiR-124 targets Slug to regulate epithelial–mesenchymal transition and metastasis of breast cancer , 2012, Carcinogenesis.

[9]  A. Look,et al.  The requirement for cyclin D function in tumor maintenance. , 2012, Cancer cell.

[10]  C. Croce,et al.  MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review , 2012, EMBO molecular medicine.

[11]  Gang Lu,et al.  Loss of Brain-enriched miR-124 MicroRNA Enhances Stem-like Traits and Invasiveness of Glioma Cells* , 2012, The Journal of Biological Chemistry.

[12]  S. Gygi,et al.  A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. , 2011, Cancer cell.

[13]  X. Bian,et al.  The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2 , 2011, Gut.

[14]  J. Coebergh,et al.  Unfavourable pattern of metastases in M0 breast cancer patients during 1978-2008: a population-based analysis of the Munich Cancer Registry , 2011, Breast Cancer Research and Treatment.

[15]  Adam V Jones,et al.  MicroRNA‐124 suppresses oral squamous cell carcinoma motility by targeting ITGB1 , 2011, FEBS letters.

[16]  M. Barbacid,et al.  A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. , 2010, Cancer cell.

[17]  Shinji Tanaka,et al.  miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. , 2010, Carcinogenesis.

[18]  M. Prados,et al.  Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. , 2010, Cancer research.

[19]  E. Winer,et al.  International Guidelines for Management of Metastatic Breast Cancer: Can Metastatic Breast Cancer Be Cured? , 2010, Journal of the National Cancer Institute.

[20]  F. Slack,et al.  MicroRNA in cancer prognosis. , 2008, The New England journal of medicine.

[21]  Massimo Negrini,et al.  Breast cancer metastasis: a microRNA story , 2008, Breast Cancer Research.

[22]  Shuomin Zhu,et al.  MicroRNA-21 targets tumor suppressor genes in invasion and metastasis , 2008, Cell Research.

[23]  D. Medina,et al.  Re-evaluation of mammary stem cell biology based on in vivo transplantation , 2008, Breast Cancer Research.

[24]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[25]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[26]  T. Maniatis,et al.  The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. , 2007, Molecular cell.

[27]  G. Peters,et al.  CDK4 and CDK6 Delay Senescence by Kinase-Dependent and p16INK4a-Independent Mechanisms , 2007, Molecular and Cellular Biology.

[28]  F. Gage,et al.  A functional study of miR-124 in the developing neural tube. , 2007, Genes & development.

[29]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[30]  R. Pillai MicroRNA function: multiple mechanisms for a tiny RNA? , 2005, RNA.

[31]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[32]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[33]  Konstantin Khrapko,et al.  A microRNA array reveals extensive regulation of microRNAs during brain development. , 2003, RNA.

[34]  A. Gudkov,et al.  Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. , 2002, Genes & development.

[35]  S. Rane,et al.  Germ Line Transmission of the Cdk4R24C Mutation Facilitates Tumorigenesis and Escape from Cellular Senescence , 2002, Molecular and Cellular Biology.

[36]  W Arap,et al.  Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. , 1997, Cancer research.

[37]  M. Serrano,et al.  A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma , 1995, Science.

[38]  G. Reifenberger,et al.  CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. , 1994, Cancer research.

[39]  C. James,et al.  CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. , 1994, Cancer research.

[40]  Giles R. Scuderi,et al.  A Comprehensive Review , 2017 .

[41]  A. Jemal,et al.  Breast cancer statistics, 2013 , 2014, CA: a cancer journal for clinicians.

[42]  Wei Wu,et al.  MicroRNA-Based Therapeutics for Cancer , 2012, BioDrugs.

[43]  Yan Geng,et al.  Requirement for CDK4 kinase function in breast cancer. , 2006, Cancer cell.

[44]  Tiansen Li,et al.  Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. , 2006, Cancer cell.