INDIRECT STABILIZATION OF LOCALLY COUPLED WAVE-TYPE SYSTEMS

We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not hold (see (F. Alabau, P. Cannarsa and V. Komornik, J. Evol. Equ. 2 (2002) 127-150)). We give applications of our result to locally or boundary damped wave or plate systems. In any space dimension, we prove polynomial stability under geometric conditions on both the coupling and the damping regions. In one space dimension, the result holds for arbitrary non-empty open damping and coupling regions, and in particular when these two regions have an empty intersection. Hence, indirect polynomial stability holds even though the feedback is active in a region in which the coupling vanishes and vice versa.

[1]  Matthieu Léautaud Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems , 2010 .

[2]  Luz de Teresa,et al.  Unique continuation principle for systems of parabolic equations , 2010 .

[3]  Annick Beyrath Indirect linear locally distributed damping of coupled systems , 2009 .

[4]  Fatiha Alabau-Boussouira Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control , 2007 .

[5]  Farid Ammar Khodja,et al.  Null-controllability of some reaction–diffusion systems with one control force , 2006 .

[6]  Fatiha Alabau-Boussouira Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation , 2006 .

[7]  R. Racke,et al.  Energy decay for Timoshenko systems of memory type , 2003 .

[8]  Luc Miller,et al.  Escape Function Conditions for the Observation, Control, and Stabilization of the Wave Equation , 2002, SIAM J. Control. Optim..

[9]  Vilmos Komornik,et al.  Indirect internal stabilization of weakly coupled evolution equations , 2002 .

[10]  Fatiha Alabau-Boussouira,et al.  Indirect Boundary Stabilization of Weakly Coupled Hyperbolic Systems , 2002, SIAM J. Control. Optim..

[11]  G. Lebeau,et al.  Mesures de défaut de compacité, application au système de Lamé , 2001 .

[12]  Luz de Teresa,et al.  Insensitizing controls for a semilinear heat equation , 2000 .

[13]  Enrique Zuazua,et al.  Decay Rates for the Three‐Dimensional Linear System of Thermoelasticity , 1999 .

[14]  Fatiha Alabau,et al.  Stabilisation frontière indirecte de systèmes faiblement couplés , 1999 .

[15]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[16]  Kangsheng Liu Locally Distributed Control and Damping for the Conservative Systems , 1997 .

[17]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[18]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[19]  W. Youssef Contrôle et stabilisation de systèmes élastiques couplés , 2009 .

[20]  Manuel González-Burgos,et al.  Controllability results for some nonlinear coupled parabolic systems by one control force , 2006, Asymptot. Anal..

[21]  Fatiha Alabau-Boussouira Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems , 2005 .

[22]  Fatiha Alabau-Boussouira,et al.  A general formula for decay rates of nonlinear dissipative systems , 2004 .

[23]  Fatiha Alabau-Boussouira,et al.  A Two-Level Energy Method for Indirect Boundary Observability and Controllability of Weakly Coupled Hyperbolic Systems , 2003, SIAM J. Control. Optim..

[24]  P. Martinez A new method to obtain decay rate estimates for dissipative systems with localized damping , 1999 .

[25]  G. Lebeau,et al.  Stabilisation de l’équation des ondes par le bord , 1997 .

[26]  G. Lebeau,et al.  Equation des Ondes Amorties , 1996 .

[27]  Anne Boutet de Monvel,et al.  Algebraic and Geometric Methods in Mathematical Physics , 1996 .

[28]  Francis Conrad,et al.  Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback , 1993 .

[29]  Enrique Zuazua,et al.  Exponential Decay for The Semilinear Wave Equation with Locally Distributed Damping , 1990 .

[30]  J. Lions Controlabilite exacte, perturbations et stabilisation de systemes distribues , 1988 .

[31]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .