Equilibrium problem for the eigenvalues of banded block Toeplitz matrices
暂无分享,去创建一个
[1] Lun Zhang,et al. The asymptotic zero distribution of multiple orthogonal polynomials associated with Macdonald functions , 2011, J. Approx. Theory.
[2] V. N. Sorokin,et al. Rational Approximations and Orthogonality , 1991 .
[3] A. Böttcher,et al. Notes on the asymptotic behavior of block TOEPLITZ matrices and determinants , 1980 .
[4] Thomas Ransford,et al. Potential Theory in the Complex Plane: Bibliography , 1995 .
[5] Bernd Silbermann,et al. Invertibility And Asymptotics Of Toeplitz Matrices , 1990 .
[6] I. Hirschman,et al. The spectra of certain Toeplitz matrices , 1967 .
[7] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[8] Arno B. J. Kuijlaars,et al. An Equilibrium Problem for the Limiting Eigenvalue Distribution of Banded Toeplitz Matrices , 2007, SIAM J. Matrix Anal. Appl..
[9] J. L. Ullman,et al. A problem of Schmidt and Spitzer , 1967 .
[10] Frank Spitzer,et al. The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .
[11] David Goss,et al. Basic Structures of Function Field Arithmetic , 1997 .
[12] Albrecht Böttcher,et al. Spectral properties of banded Toeplitz matrices , 1987 .
[13] E. Saff,et al. Zero asymptotic behaviour for orthogonal matrix polynomials , 1999 .
[14] Martin Bender,et al. Multiple Meixner-Pollaczek polynomials and the six-vertex model , 2011, J. Approx. Theory.
[15] G. Baxter,et al. Determinants of a Certain Class of Non-Hermitian Toeplitz Matrices. , 1961 .
[16] Maurice Duits,et al. A vector equilibrium problem for the two-matrix model in the quartic/quadratic case , 2011 .
[17] H. Dette,et al. Random Block Matrices and Matrix Orthogonal Polynomials , 2008, 0809.4601.
[18] Steven Delvaux,et al. An Equilibrium Problem for the Limiting Eigenvalue Distribution of Rational Toeplitz Matrices , 2010, SIAM J. Matrix Anal. Appl..
[19] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[20] Arno B. J. Kuijlaars,et al. Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths , 2010, J. Approx. Theory.
[21] Harold Widom,et al. On the eigenvalues of certain Hermitian operators , 1958 .