Pricing Arithmetic Asian Options under Hybrid Stochastic and Local Volatility

Recently, hybrid stochastic and local volatility models have become an industry standard for the pricing of derivatives and other problems in finance. In this study, we use a multiscale stochastic volatility model incorporated by the constant elasticity of variance to understand the price structure of continuous arithmetic average Asian options. The multiscale partial differential equation for the option price is approximated by a couple of single scale partial differential equations. In terms of the elasticity parameter governing the leverage effect, a correction to the stochastic volatility model is made for more efficient pricing and hedging of Asian options.

[1]  S. Shreve Stochastic Calculus for Finance II: Continuous-Time Models , 2010 .

[2]  Song‐Ping Zhu,et al.  A multiscale correction to the Black-Scholes formula , 2014 .

[3]  M. Yor,et al.  Stochastic Volatility for Levy Processes , 2001 .

[4]  J. Fouque,et al.  Option pricing under hybrid stochastic and local volatility , 2013 .

[5]  M. Fu,et al.  Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .

[6]  Jan Večeř Unified Pricing of Asian Options , 2002 .

[7]  Vladimir V. Piterbarg,et al.  Moment explosions in stochastic volatility models , 2005, Finance and Stochastics.

[8]  A. Kemna,et al.  A pricing method for options based on average asset values , 1990 .

[9]  A. D. Schepper,et al.  Pricing bounds for discrete arithmetic Asian options under Lévy models , 2010 .

[10]  B. Peng,et al.  Pricing Arithmetic Asian Options Under the CEV Process , 2010, Cuadernos de difusión.

[11]  Samuel Mongrut,et al.  Estimation of Discount Rates in Latin America: Empirical Evidence and Challenges , 2010, Cuadernos de difusión.

[12]  Jean-Pierre Fouque,et al.  Pricing Asian options with stochastic volatility , 2003 .

[13]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[14]  G. Papanicolaou,et al.  Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives , 2011 .

[15]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[16]  Alexander G. Ramm,et al.  A Simple Proof of the Fredholm Alternative and a Characterization of the Fredholm Operators , 2000, Am. Math. Mon..

[17]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[18]  Vadim Linetsky,et al.  Spectral Expansions for Asian (Average Price) Options , 2004, Oper. Res..

[19]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[20]  G. Papanicolaou,et al.  Asymptotics of a Two-Scale Stochastic Volatility Model , 1998 .

[21]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[22]  Ronnie Sircar,et al.  Singular Perturbations in Option Pricing , 2003, SIAM J. Appl. Math..