Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform

[1]  Yang Yu,et al.  A roller bearing fault diagnosis method based on EMD energy entropy and ANN , 2006 .

[2]  Cheng Junsheng,et al.  Research on the intrinsic mode function (IMF) criterion in EMD method , 2006 .

[3]  Yuesheng Xu,et al.  Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum , 2006 .

[4]  Yang Yu,et al.  A fault diagnosis approach for roller bearings based on EMD method and AR model , 2006 .

[5]  V. Purushotham,et al.  Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition , 2005 .

[6]  Yang Yu,et al.  Time–energy density analysis based on wavelet transform , 2005 .

[7]  P. Tse,et al.  A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing , 2005 .

[8]  K. Loparo,et al.  Bearing fault diagnosis based on wavelet transform and fuzzy inference , 2004 .

[9]  N. Tandon,et al.  Detection of Defects at Different Locations in Ball Bearings by Vibration and Shock Pulse Monitoring , 2003 .

[10]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[11]  A. Mohanty,et al.  APPLICATION OF DISCRETE WAVELET TRANSFORM FOR DETECTION OF BALL BEARING RACE FAULTS , 2002 .

[12]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  P. D. McFadden,et al.  Vibration monitoring of rolling element bearings by the high-frequency resonance technique — a review , 1984 .