Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles

[1]  R. V. Van Duyne,et al.  Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome p450. , 2006, Journal of the American Chemical Society.

[2]  George C Schatz,et al.  Localized surface plasmon resonance spectroscopy near molecular resonances. , 2006, Journal of the American Chemical Society.

[3]  George C Schatz,et al.  Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[4]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[5]  G. Schatz,et al.  Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate , 2005, Nanotechnology.

[6]  D. A. Stuart,et al.  Towards advanced chemical and biological nanosensors-An overview. , 2005, Talanta.

[7]  C. Keating,et al.  Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. , 2005, Nano letters.

[8]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[9]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[10]  A. Hohenau,et al.  The optical near-field of gold nanoparticle chains , 2005 .

[11]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[12]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[13]  R. V. Van Duyne,et al.  A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. , 2004, Journal of the American Chemical Society.

[14]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[15]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[16]  U. Kreibig,et al.  Interface decay channel of particle surface plasmon resonance , 2003 .

[17]  Jonathan Tennyson,et al.  Electron collisions with the CF3 radical using the R-matrix method , 2003 .

[18]  George Chumanov,et al.  Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. , 2003, Journal of the American Chemical Society.

[19]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[20]  M. Quinten,et al.  Absorption and elastic scattering of light by particle aggregates. , 1993, Applied optics.

[21]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[22]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[23]  Marcel Ausloos,et al.  Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. Optical properties of aggregated metal spheres , 1982 .

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .