Synchronization of Modified Chen System

This paper addresses the synchronization problem of two modified Chen systems in the presence of unknown system parameters. One-way coupling and active control laws are applied to achieve the state synchronization of two identical modified Chen systems. Based on Lyapunov stability theory, active control laws are derived such that the two modified Chen systems are to be synchronized. Numerical simulations results are used to demonstrate the effectiveness of the proposed control methods.

[1]  K. Scarbrough,et al.  of Electrical Engineering , 1982 .

[2]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[3]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[4]  Guanrong Chen,et al.  Asymptotic Analysis of a New Piecewise-Linear Chaotic System , 2002, Int. J. Bifurc. Chaos.

[5]  Guanrong Chen,et al.  SYNCHRONIZATION STABILITY ANALYSIS OF THE CHAOTIC RÖSSLER SYSTEM , 1996 .

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  Leon O. Chua,et al.  ON ADAPTIVE SYNCHRONIZATION AND CONTROL OF NONLINEAR DYNAMICAL SYSTEMS , 1996 .

[8]  Jinhu Lu,et al.  Parameters identification and synchronization of chaotic systems based upon adaptive control , 2002 .

[9]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[10]  Teh-Lu Liao,et al.  Adaptive control and synchronization of Lorenz systems , 1999 .

[11]  Sahjendra N. Singh,et al.  Adaptive Control of Chaos in Lorenz System , 1997 .

[12]  Er-Wei Bai,et al.  Synchronization and Control of Chaotic Systems , 1999 .

[13]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[14]  Guanrong Chen,et al.  Feedback anticontrol of discrete chaos , 1998 .

[15]  M. Bernardo An adaptive approach to the control and synchronization of continuous-time chaotic systems , 1996 .

[16]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[17]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[18]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[19]  Er-Wei Bai,et al.  Sequential synchronization of two Lorenz systems using active control , 2000 .

[20]  P. Jarry,et al.  “LORENZ ATTRACTOR” FROM DIFFERENTIAL EQUATIONS WITH PIECEWISE-LINEAR TERMS , 1993 .

[21]  T. Liao,et al.  Adaptive Synchronization of Two Lorenz Systemsfn1 , 1998 .

[22]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[23]  Guanrong Chen Control and anticontrol of chaos , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[24]  M. A. Aziz-Alaoui,et al.  Differential Equations with Multispiral Attractors , 1999 .

[25]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[26]  L. Chua,et al.  Canonical realization of Chua's circuit family , 1990 .