A mgl-like operon in Treponema pallidum, the syphilis spirochete.

[1]  J. Radolf,et al.  The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Radolf,et al.  Similarity between the 38-kilodalton lipoprotein of Treponema pallidum and the glucose/galactose-binding (MglB) protein of Escherichia coli , 1994, Infection and immunity.

[3]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[4]  R. Kolter,et al.  ABC transporters: bacterial exporters , 1993, Microbiological reviews.

[5]  G. Richarme,et al.  The MglA component of the binding protein-dependent galactose transport system of Salmonella typhimurium is a galactose-stimulated ATPase. , 1993, The Journal of biological chemistry.

[6]  H. Berg,et al.  Bacterial motility and signal transduction , 1993, Cell.

[7]  Michael J. Chamberlin,et al.  Motility and Chemotaxis , 1993 .

[8]  M. Norgard,et al.  Analysis of the N-terminal region of the 47-kilodalton integral membrane lipoprotein of Treponema pallidum , 1992, Infection and immunity.

[9]  L. Schouls Molecular biology of Treponema pallidum. , 1992, Molecular and cell biology of human diseases series.

[10]  L. Archard,et al.  Molecular and Cell Biology of Sexually Transmitted Diseases , 1992, Molecular and Cell Biology of Human Diseases Series.

[11]  G. Ames,et al.  Role of the intercistronic region in post‐transcriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences , 1988, Molecular microbiology.

[12]  B. Horazdovsky,et al.  High-affinity L-arabinose transport operon. Gene product expression and mRNAs. , 1987, Journal of molecular biology.

[13]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[14]  G. Wahl,et al.  Cosmid vectors for rapid genomic walking, restriction mapping, and gene transfer. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Inouye Bacterial outer membranes as model systems , 1987 .

[16]  T Platt,et al.  Transcription termination and the regulation of gene expression. , 1986, Annual review of biochemistry.

[17]  W. Boos,et al.  Characterization of the Salmonella typhimurium mgl operon and its gene products , 1985, Journal of bacteriology.

[18]  Robert Entriken,et al.  Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity , 1984, Nucleic Acids Res..

[19]  M. Norgard,et al.  Cloning and expression of Treponema pallidum (Nichols) antigen genes in Escherichia coli , 1983, Infection and immunity.

[20]  A. Lamond,et al.  Requirement for an upstream element for optimal transcription of a bacterial tRNA gene , 1983, Nature.

[21]  S. Norris,et al.  The biology, pathology, and immunology of syphilis. , 1983, International review of experimental pathology.

[22]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[23]  J. Barbieri,et al.  Distribution of glucose incorporated into macromolecular material by treponema pallidum , 1981, Infection and immunity.

[24]  F A Quiocho,et al.  The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli. , 1980, The Journal of biological chemistry.

[25]  C. D. Cox,et al.  Catabolism of glucose and fatty acids by virulent Treponema pallidum , 1977, Infection and immunity.

[26]  J. Baseman,et al.  Carbon sources utilized by virulent Treponema pallidum , 1975, Infection and immunity.