Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions.

[1]  E. Sprecher,et al.  Topobiology of human pigmentation: P-cadherin selectively stimulates hair follicle melanogenesis. , 2013, The Journal of investigative dermatology.

[2]  R. Deberardinis,et al.  Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle Development , 2013, Science Signaling.

[3]  D. Wallace Mitochondria and cancer , 2012, Nature Reviews Cancer.

[4]  D. Tobin,et al.  Bone morphogenetic proteins differentially regulate pigmentation in human skin cells , 2012, Journal of Cell Science.

[5]  E. Alnemri,et al.  Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging , 2012, Cell Death and Differentiation.

[6]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[7]  K. Horiuchi,et al.  Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin , 2012, Nature Immunology.

[8]  Hsiao-Wen Chen,et al.  A mitochondrial etiology of Alzheimer and Parkinson disease. , 2012, Biochimica et biophysica acta.

[9]  J. Nunnari,et al.  Mitochondria: In Sickness and in Health , 2012, Cell.

[10]  D. Francés,et al.  Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. , 2012, Developmental biology.

[11]  R. Paus,et al.  Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis. , 2012, The Journal of clinical endocrinology and metabolism.

[12]  T. Prolla,et al.  Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. , 2012, Cell metabolism.

[13]  V. Horsley,et al.  Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling , 2011, Cell.

[14]  T. Langer,et al.  The Mitochondrial Electron Transport Chain Is Dispensable for Proliferation and Differentiation of Epidermal Progenitor Cells , 2011, Stem cells.

[15]  M. Sigvardsson,et al.  Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. , 2011, Cell stem cell.

[16]  J. Hayashi,et al.  Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells , 2010, FEBS letters.

[17]  N. Larsson Somatic mitochondrial DNA mutations in mammalian aging. , 2010, Annual review of biochemistry.

[18]  H. Broxmeyer,et al.  Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: A potential strategy for reducing oxidative risk in stem cells , 2010, Cell cycle.

[19]  R. Paus,et al.  Thyrotropin powers human mitochondria , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  Yau-Huei Wei,et al.  Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. , 2010, Biochimica et biophysica acta.

[21]  R. Paus,et al.  The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization , 2010, Experimental dermatology.

[22]  R. Youle,et al.  The role of mitochondria in apoptosis*. , 2009, Annual review of genetics.

[23]  Boris Jerchow,et al.  Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. , 2009, Developmental cell.

[24]  R. Paus,et al.  Human female hair follicles are a direct, nonclassical target for thyroid-stimulating hormone. , 2009, The Journal of investigative dermatology.

[25]  Ralf Paus,et al.  The Hair Follicle as a Dynamic Miniorgan , 2009, Current Biology.

[26]  M. Ishizuka,et al.  Hair growth stimulatory effect by a combination of 5‐aminolevulinic acid and iron ion , 2008, International journal of dermatology.

[27]  E. Fuchs,et al.  Hair follicle stem cells are specified and function in early skin morphogenesis. , 2008, Cell stem cell.

[28]  J. Tobias,et al.  Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate , 2008, Development.

[29]  W. Wahli,et al.  Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. , 2007, Biochimica et biophysica acta.

[30]  R. Wiesner,et al.  Human epidermal keratinocytes accumulate superoxide due to low activity of Mn-SOD, leading to mitochondrial functional impairment. , 2007, The Journal of investigative dermatology.

[31]  Elaine Fuchs,et al.  Scratching the surface of skin development , 2007, Nature.

[32]  H. McBride,et al.  Mitochondria: More Than Just a Powerhouse , 2006, Current Biology.

[33]  G. Cotsarelis Epithelial stem cells: a folliculocentric view. , 2006, The Journal of investigative dermatology.

[34]  Makoto Asashima,et al.  The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt–β-catenin signalling through Dishevelled , 2006, Nature Cell Biology.

[35]  R. Paus,et al.  A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. , 2005, The Journal of investigative dermatology.

[36]  B. Fleischmann,et al.  Activity of complex III of the mitochondrial electron transport chain is essential for early heart muscle cell differentiation , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  Howard T. Jacobs,et al.  Premature ageing in mice expressing defective mitochondrial DNA polymerase , 2004, Nature.

[38]  John P. Sundberg,et al.  Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis , 2003, Development.

[39]  I. Cassar-Malek,et al.  Mitochondrial Activity Is Involved in the Regulation of Myoblast Differentiation through Myogenin Expression and Activity of Myogenic Factors* , 2000, The Journal of Biological Chemistry.

[40]  R Paus,et al.  A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. , 1999, The Journal of investigative dermatology.

[41]  S. Eichmüller,et al.  Generation and cyclic remodeling of the hair follicle immune system in mice. , 1998, The Journal of investigative dermatology.

[42]  Carina,et al.  Analysis of apoptosis during hair follicle regression (catagen) , 1997, The American journal of pathology.

[43]  S. Eichmüller,et al.  Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. , 1994, The American journal of pathology.

[44]  D. Tobin,et al.  Cell Degeneration in Alopecia Areata: An Ultrastructural Study , 1991, The American Journal of dermatopathology.

[45]  R. Paus,et al.  A 'hairy' privilege. , 2005, Trends in immunology.

[46]  R. Paus,et al.  Epithelial growth control by neurotrophins: leads and lessons from the hair follicle. , 2004, Progress in brain research.

[47]  R Paus,et al.  Controls of hair follicle cycling. , 2001, Physiological reviews.

[48]  T. Kealey,et al.  The human hair follicle engages in glutaminolysis and aerobic glycolysis: implications for skin, splanchnic and neoplastic metabolism. , 1994, Skin pharmacology : the official journal of the Skin Pharmacology Society.