Recent advances in high-contrast metastructures, metasurfaces and photonic crystals

In the recent decade, the research field using arrays of high-index-contrast near-wavelength dieletric structures on flat surfaces, known as high-contrast metastructures (HCMs) or metasurfaces, has emerged and expanded rapidly. Although the HCMs and metasurfaces share great similarities in physical structures with photonic crystals (PhCs), i.e. periodic nanostructures, many differences exist in their design, analysis, operation conditions, and applications. In this paper, we provide a generalized theoretical understanding of the two subjects and show their intrinsic connections. We further discuss the simulation and design approaches, categorized by their functionalities and applications. The similarity and differences between HCMs, metasurfaces and PhCs are also discussed. New findings are presented regarding the physical connection between the PhC band structures and the 1D and 2D HCM scattering spectra under transverse and longitudinal tilt incidence. Novel designs using HCMs as holograms, spatial light modulators, and surface plasmonic couplers are discussed. Recent advances on HCMs, metasurfaces and PhCs are reviewed and compared for applications such as broadband mirrors, waveguides, couplers, resonators, and reconfigurable optics.

[1]  T. Krauss,et al.  Ultracompact and low-power optical switch based on silicon photonic crystals. , 2008, Optics letters.

[2]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[3]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[4]  Li Zhu,et al.  Novel high efficiency vertical to in-plane optical coupler , 2012, Other Conferences.

[5]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[6]  Alfred Forchel,et al.  Nanofabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers , 2001 .

[7]  S. Noda,et al.  On-chip beam-steering photonic-crystal lasers , 2010 .

[8]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[9]  Weidong Zhou,et al.  Transfer-printed stacked nanomembrane lasers on silicon , 2012, Nature Photonics.

[10]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[11]  Theodor Tamir,et al.  Frequency-selective reflection and transmission by a periodic dielectric layer , 1989 .

[12]  S. Noda,et al.  Ultrahigh-$Q$ Nanocavities in Two-Dimensional Photonic Crystal Slabs , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Li Zhu,et al.  High-efficiency aperiodic two-dimensional high-contrast-grating hologram , 2016, SPIE OPTO.

[14]  G. Michael Morris,et al.  Antireflection behavior of silicon subwavelength periodic structures for visible light , 1997 .

[15]  T. Sun,et al.  Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator. , 2016, Optics express.

[16]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[17]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[18]  S. Noda,et al.  Watt-class high-power, high-beam-quality photonic-crystal lasers , 2014, Nature Photonics.

[19]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[20]  N. Olivier,et al.  CMOS-Compatible Ultra-Compact 1.55- μ m Emitting VCSELs Using Double Photonic Crystal Mirrors , 2012, IEEE Photonics Technology Letters.

[21]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[22]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[23]  J. Mørk,et al.  Broadband MEMS-Tunable High-Index-Contrast Subwavelength Grating Long-Wavelength VCSEL , 2010, IEEE Journal of Quantum Electronics.

[24]  T. Sun,et al.  Surface-normal coupled four-wave mixing in a high contrast grating resonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[25]  Toshihiko Baba,et al.  Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. , 2007, Optics letters.

[26]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[27]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[28]  Guofan Jin,et al.  Lighting effects rendering in three-dimensional computer-generated holographic display , 2016 .

[29]  Weimin Zhou,et al.  Low-loss slow light inside high contrast grating waveguide , 2012, Other Conferences.

[30]  Ye Zhou,et al.  Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. , 2008, Optics express.

[31]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[32]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[33]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[34]  Daniel Maystre,et al.  Theory of Wood’s Anomalies , 2012 .

[35]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[36]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[37]  Z. Bomzon,et al.  Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. , 2002, Optics letters.

[38]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[39]  Yeshaiahu Fainman,et al.  Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation. , 2005, Optics letters.

[40]  Highly tunable elastic dielectric metasurface lenses , 2016 .

[41]  Federico Capasso,et al.  Active Optical Metasurfaces Based on Defect-Engineered Phase-Transition Materials. , 2016, Nano letters.

[42]  Andrea Alù,et al.  Recent progress in gradient metasurfaces , 2016 .

[43]  Tianbo Sun,et al.  High-speed optical phased array using high-contrast grating all-pass filters , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[44]  C. Chang-Hasnain,et al.  MEMS-tunable VCSELs using 2D high-contrast gratings. , 2017, Optics letters.

[45]  S. S. Wang,et al.  Theory and applications of guided-mode resonance filters. , 1993, Applied optics.

[46]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[47]  Nate Lawrence,et al.  Aperiodic arrays of active nanopillars for radiation engineering , 2012 .

[48]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[49]  Yuri S. Kivshar,et al.  Grayscale transparent metasurface holograms , 2016 .

[50]  D. P. Worland,et al.  Long-Wavelength VCSEL Using High-Contrast Grating , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[52]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[53]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[54]  Hitoshi Kawaguchi,et al.  Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser , 2006 .

[55]  M. Moewe,et al.  High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  Weijian Yang,et al.  High-contrast gratings for integrated optoelectronics , 2012 .

[57]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[58]  Yang Yue,et al.  Low loss hollow-core waveguide on a silicon substrate , 2012 .

[59]  T. Ishihara,et al.  Quasiguided modes and optical properties of photonic crystal slabs , 2002 .

[60]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[61]  R. Mittra,et al.  Techniques for analyzing frequency selective surfaces-a review , 1988, Proc. IEEE.

[62]  M. Murnane,et al.  Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching. , 2017, Optics express.

[63]  Ray T. Chen,et al.  Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors. , 2013, Biosensors & bioelectronics.

[64]  Y. Suzuki,et al.  Broad-band mirror (1.12-1.62 /spl mu/m) using a subwavelength grating , 2004, IEEE Photonics Technology Letters.

[65]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[66]  Ming C. Wu,et al.  Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering. , 2013, Optics express.

[67]  C. Holloway,et al.  Averaged transition conditions for electromagnetic fields at a metafilm , 2003 .

[68]  A. A. Oliner,et al.  A New Theory of Wood’s Anomalies on Optical Gratings , 1965 .

[69]  Weijian Yang,et al.  Monolithic high-contrast metastructure for beam-shaping VCSELs , 2018 .

[70]  Robert Magnusson,et al.  Wideband reflectors with zero-contrast gratings. , 2014, Optics letters.

[71]  Wanhua Zheng,et al.  Comparison between high- and zero-contrast gratings as VCSEL mirrors , 2017 .

[72]  Prasad P. Iyer,et al.  Electrically Reconfigurable Metasurfaces Using Heterojunction Resonators , 2016 .

[73]  Vishwani D. Agrawal,et al.  Design of a dichroic Cassegrain subreflector , 1979 .

[74]  Bryan Ellis,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[75]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[76]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[77]  P. Russell Photonic Crystal Fibers , 2003, Science.

[78]  M. Zussy,et al.  3D harnessing of light with 2.5D photonic crystals , 2010 .

[79]  U. Fano Zur Theorie der Intensitätsanomalien der Beugung , 1938 .

[80]  J. Gustavsson,et al.  Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. , 2016, Optics express.

[81]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[82]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[83]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[84]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[85]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[86]  Shun Lien Chuang,et al.  Variable optical buffer using slow light in semiconductor nanostructures , 2003, Proc. IEEE.

[87]  J. Mørk,et al.  Polarization-independent high-index contrast grating and its fabrication tolerances. , 2013, Applied optics.

[88]  Jean-Michel Lourtioz,et al.  Isotropic photonic structures: Archimedean-like tilings and quasi-crystals , 2001 .

[89]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[90]  Shanhui Fan,et al.  Guided and defect modes in periodic dielectric waveguides , 1995 .

[91]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[92]  Weidong Zhou,et al.  Polarization independent broadband reflectors based on cross-stacked gratings. , 2011, Optics express.

[93]  Li Zhu,et al.  Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. , 2017, Optics express.

[94]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[95]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[96]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[97]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .

[98]  C. Chang-Hasnain,et al.  High contrast gratings for integrated optoelectronics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[99]  C. Chang-Hasnain,et al.  A nanoelectromechanical tunable laser , 2008 .

[100]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[101]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[102]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[103]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[104]  Andrei Faraon,et al.  Planar metasurface retroreflector , 2017, Nature Photonics.

[105]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[106]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[107]  Vadim Karagodsky,et al.  Matrix Fabry-Perot resonance mechanism in high-contrast gratings. , 2011, Optics letters.

[108]  T. Sun,et al.  High-contrast grating resonators for label-free detection of disease biomarkers , 2016, Scientific Reports.

[109]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[110]  Weijian Yang,et al.  Compact On-Chip Optical Components Based on Multimode Interference Design Using High-Contrast Grating Hollow-Core Waveguides , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[111]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[112]  C. Chang-Hasnain,et al.  Wavelength-Swept VCSELs , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[113]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[114]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[115]  Li Zhu,et al.  Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. , 2015, Optics express.

[116]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[117]  Carsten Rockstuhl,et al.  Babinet’s principle for optical frequency metamaterials and nanoantennas , 2007 .

[118]  Wanhua Zheng,et al.  Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. , 2012, Optics express.

[119]  Qing Huo Liu,et al.  The 2.5-D multidomain pseudospectral time-domain algorithm , 2003 .

[120]  Ye Zhou,et al.  Size effect of high contrast gratings in VCSELs. , 2009, Optics express.

[121]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[122]  R. Baets,et al.  Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides , 2006 .

[123]  Raj Mittra,et al.  Efficient calculation of the free-space periodic Green's function , 1990 .

[124]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[125]  Li Zhu,et al.  Flexible photonic metastructures for tunable coloration , 2015 .

[126]  Lord Rayleigh,et al.  On the Dynamical Theory of Gratings , 1907 .

[127]  Weimin Zhou,et al.  Slow-light high contrast metastructure hollow-core waveguides , 2012, Other Conferences.

[128]  Li Zhu,et al.  Theory and design of two-dimensional high-contrast-grating phased arrays. , 2015, Optics express.

[129]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[130]  T. Gaylord,et al.  Theoretical Analysis of Subwavelength High Contrast Grating Reflectors References and Links , 2022 .

[131]  P. Maddalena,et al.  Spin-to-orbital angular momentum conversion in dielectric metasurfaces. , 2016, Optics express.

[132]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[133]  Marco Fiorentino,et al.  A multi-directional backlight for a wide-angle, glasses-free three-dimensional display , 2013, Nature.

[134]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[135]  Eric Plum,et al.  Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial , 2016, Advanced materials.

[136]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[137]  Weijian Yang,et al.  Laser optomechanics , 2015, Scientific Reports.

[138]  Weijian Yang,et al.  Surface-normal second harmonic emission from AlGaAs high-contrast gratings , 2013 .

[139]  E. Kuester,et al.  A homogenization technique for obtaining generalized sheet transition conditions for an arbitrarily shaped coated wire grating , 2014 .

[140]  Bin Wang,et al.  Compact slanted grating couplers. , 2004, Optics express.