Hydrothermal alteration, lithogeochemical marker units and vectors towards mineralisation at the Svärdsjö Zn-Pb-Cu deposit, Bergslagen, Sweden
暂无分享,去创建一个
[1] E. Jonsson,et al. Mineral paragenesis and sulphide trace element distribution in the metamorphosed Lovisa Zn-Pb deposit, Bergslagen (Sweden), as revealed by 3D X-ray tomography, ore petrography and LA-ICP-MS analysis , 2021, Ore Geology Reviews.
[2] Göran Skogsmo,et al. Principal component analysis and K-means clustering as tools during exploration for Zn skarn deposits and industrial carbonates, Sala area, Sweden , 2021, Journal of Geochemical Exploration.
[3] Göran Skogsmo,et al. Origin of Palaeoproterozoic, sub-seafloor Zn-Pb-Ag skarn deposits, Sala area, Bergslagen, Sweden , 2021, Mineralium Deposita.
[4] C. Wanhainen,et al. Ore mineralogy and trace element (re)distribution at the metamorphosed Lappberget Zn-Pb-Ag-(Cu-Au) deposit, Garpenberg, Sweden , 2021 .
[5] L. Warr. IMA–CNMNC approved mineral symbols , 2021, Mineralogical Magazine.
[6] H. Raat,et al. Variability in the Geologic, Mineralogical, and Geochemical Characteristics of Base Metal Sulfide Deposits in the Stollberg Ore Field, Bergslagen District, Sweden , 2019, Economic Geology.
[7] P. Spry,et al. The Lovisa Stratiform Zn-Pb Deposit, Bergslagen, Sweden: Structure, Stratigraphy, and Ore Genesis , 2018 .
[8] C. Wanhainen,et al. Syn-tectonic sulphide remobilization and trace element redistribution at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden , 2018 .
[9] J. Majka,et al. Systematics of Hydrothermal Alteration at the Falun Base Metal Sulfide Deposit and Implications for Ore Genesis and Exploration, Bergslagen ore district, Fennoscandian Shield, Sweden , 2017 .
[10] N. Jansson. Structural evolution of the Palaeoproterozoic Sala stratabound Zn-Pb-Ag carbonate-replacement deposit, Bergslagen, Sweden , 2017 .
[11] J. Majka,et al. Time constraints on magmatism, mineralisation and metamorphism at the Falun base metal sulphide deposit, Sweden, using U–Pb geochronology on zircon and monazite , 2016 .
[12] E. Jonsson,et al. Metamorphism and deformation of a Palaeoproterozoic polymetallic sulphide–oxide mineralisation: Hornkullen, Bergslagen, Sweden , 2016 .
[13] P. Weihed,et al. 3D modelling and sheath folding at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden , 2016, Mineralium Deposita.
[14] R. Allen,et al. Multistage ore formation at the Ryllshyttan marble and skarn-hosted Zn-Pb-Ag-(Cu) + magnetite deposit, Bergslagen, Sweden , 2015 .
[15] M. Stephens,et al. Migmatization related to mafic underplating and intra- or back-arc spreading above a subduction boundary in a 2.0−1.8 Ga accretionary orogen, Sweden , 2015 .
[16] N. Jansson,et al. 3D modelling of hydrothermal alteration associated with VHMS deposits in the Kristineberg area, Skellefte district, northern Sweden , 2015, Mineralium Deposita.
[17] R. Allen,et al. Evolution of the Paleoproterozoic Volcanic-Limestone-Hydrothermal Sediment Succession and Zn-Pb-Ag and Iron Oxide Deposits at Stollberg, Bergslagen Region, Sweden , 2013 .
[18] R. Allen,et al. Timing and setting of skarn and iron oxide formation at the Smältarmossen calcic iron skarn deposit, Bergslagen, Sweden , 2013, Mineralium Deposita.
[19] F. Beunk,et al. The Bergslagen ore province, Sweden: Review and update of an accreted orocline, 1.9-1.8 Ga BP , 2012 .
[20] R. Allen,et al. The origin of skarn beds, Ryllshyttan Zn–Pb–Ag + magnetite deposit, Bergslagen, Sweden , 2011 .
[21] H. Mouri,et al. Applying the box plot to the recognition of footwall alteration zones related to VMS deposits in a high-grade metamorphic terrain, South Africa, a lithogeochemical exploration application , 2011 .
[22] W. Maclean,et al. The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden. Part II: chemostratigraphy and alteration , 2005 .
[23] R. Large,et al. Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia , 2005 .
[24] M. Hannington,et al. Mineral-chemical studies of metamorphosed hydrothermal alteration in the Kristineberg volcanogenic massive sulfide district, Sweden , 2003 .
[25] R. Large,et al. Carbon and Oxygen Isotope Halo in Carbonates Related to the McArthur River (HYC) Zn-Pb-Ag Deposit, North Australia:Implications for Sedimentation, Ore Genesis, and Mineral Exploration , 2001 .
[26] R. Allen,et al. Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden , 1996 .
[27] M. Ripa. Metal zonation in alteration assemblages at the volcanogenic Stollberg Fe–Pb–Zn–Mn(–Ag) skarn deposit, Bergslagen, Sweden , 1996 .
[28] W. Maclean,et al. Lithogeochemical techniques using immobile elements , 1993 .
[29] T. Bergman,et al. Boviksgruvan, a Au-Bi-bearing sulphide deposit in the Bergslagen Province, south central Sweden , 1991 .
[30] J. Trägårdh. Metamorphism of magnesium-altered felsic volcanic rocks from Bergslagen, central Sweden. A transition from Mg-chlorite- to cordierite-rich rocks , 1991 .
[31] A. Simeonov,et al. The Zinkgruvan ore deposit, south-central Sweden; a Proterozoic, proximal Zn-Pb-Ag deposit in distal volcanic facies , 1989 .
[32] B. Marshall,et al. An introduction to remobilization: Information from ore-body geometry and experimental considerations , 1987 .
[33] B. Marshall,et al. Textural evidence for remobilization in metamorphic environments , 1987 .
[34] J. Malmqvist,et al. Svärdsjö, a ‘Falu-type’ ore and its history of alterations and metamorphisms , 1980 .
[35] K. Billström. Preliminary results from a sulfur isotope study of the Svärdsjö sulfide deposit , 1980 .
[36] J. Winchester,et al. Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .
[37] F. M. Vokes. A review of the metamorphism of sulphide deposits , 1969 .