Hierarchical triangular splines

Smooth parametric surfaces interpolating triangular meshes are very useful for modeling surfaces of arbitrary topology. Several interpolants based on these kind of surfaces have been developed over the last fifteen years. However, with current 3D acquisition equipments, models are becoming more and more complex. Since previous interpolation methods lack a local refinement property, there is no way to locally adapt the level of detail. In this article, we introduce a hierarchical triangular surface model. The surface is overall tangent plane continuous and is defined parametrically as a piecewise quintic polynomial. It can be adaptively refined while preserving the overall tangent plane continuity. This model enables designers to create a complex smooth surface of arbitrary topology composed of a small number of patches to which details can be added by locally refining the patches until an arbitrary small size is reached. It is implemented as a hierarchical data structure where the top layer describes a coarse, smooth base surface and the lower levels encode the details in local frame coordinates.

[1]  Jörg Peters,et al.  Curved PN triangles , 2001, I3D '01.

[2]  Ramon F. Sarraga,et al.  G1 interpolation of generally unrestricted cubic Bézier curves , 1987, Comput. Aided Geom. Des..

[3]  Stefanie Hahmann,et al.  Polynomial Surfaces Interpolating Arbitrary Triangulations , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[5]  Charles T. Loop A G1 triangular spline surface of arbitrary topological type , 1994, Comput. Aided Geom. Des..

[6]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches , 1987, Comput. Aided Geom. Des..

[7]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[8]  M. A. Watkins,et al.  Problems in geometric continuity , 1988 .

[9]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[10]  J. A. Gregory Geometric continuity , 1989 .

[11]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[12]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[13]  Ron Goldman,et al.  Subdivision algorithms for Bézier triangles , 1983 .

[14]  Nira Dyn,et al.  Optimising 3D Triangulations: Improving the Initial Triangulation for the Butterfly Subdivision Scheme , 2005, Advances in Multiresolution for Geometric Modelling.

[15]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[16]  Tony DeRose,et al.  Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces , 1990, Comput. Aided Geom. Des..

[17]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[18]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[19]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[20]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[21]  Ramon F. Sarraga,et al.  Errata: G1 interpolation of generally unrestricted cubic Bézier curves , 1989, Comput. Aided Geom. Des..

[22]  Jarke J. van Wijk,et al.  Bicubic patches for approximating non-rectangular control-point meshes , 1986, Comput. Aided Geom. Des..

[23]  J. Peters,et al.  C 1 -surface splines , 1995 .

[24]  Georges-Pierre Bonneau,et al.  Subdivision Invariant Polynomial Interpolation , 2002, VisMath.

[25]  Tony DeRose,et al.  8. A Survey of Parametric Scattered Data Fitting Using Triangular Interpolants , 1992, Curve and Surface Design.

[26]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[27]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[28]  Carlos Gonzalez-Ochoa,et al.  Localized-hierarchy surface splines (LeSS) , 1999, SI3D.