Atmospheric turbulence at different elevations: consequences on laser beam wander and widening at target

The estimation of the performance of atmospheric electro-optical systems depends on the accuracy of the atmospheric models being used in the propagation prediction codes. On the basis of a large set of imaging LIDAR measurements a Middle East model of refractive turbulence strength (Cn2) vertical profile has been developed. The model is presented in this work, and laser beam wander and widening at different elevation heights in target plane is estimated. Implications can be important for optical communication, laser weaponry, imaging through the atmosphere, and adaptive optics.

[1]  J. Bufton,et al.  Comparison of vertical profile turbulence structure with stellar observations. , 1973, Applied optics.

[2]  Christopher Dainty,et al.  Results from SCIDAR experiments , 1996, Optics & Photonics.

[3]  Robert R. Beland,et al.  A deterministic temperature model for stratospheric optical turbulence , 1988 .

[4]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[5]  J. Kaimal,et al.  Turbulence Structure in the Convective Boundary Layer , 1976 .

[6]  Jean Vernin,et al.  SCIDAR/radar simultaneous measurements of atmospheric turbulence , 1990 .

[7]  K. S. Gage,et al.  Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the Sunset Radar with a new theoretical model , 1978 .

[8]  Sergey Bendersky,et al.  Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements. , 2004, Applied optics.

[9]  Changhui Rao,et al.  Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence , 2000 .

[10]  D. Gavel,et al.  Tip–tilt compensation for astronomical imaging , 1994 .

[11]  Norman S. Kopeika,et al.  LIDAR measurements of atmospheric turbulence vertical profiles , 2004, SPIE LASE.

[12]  C. Coulman,et al.  Outer scale of turbulence appropriate to modeling refractive-index structure profiles. , 1988, Applied optics.

[13]  Norman S. Kopeika,et al.  A System Engineering Approach to Imaging , 1998 .

[14]  Paul J. Titterton,et al.  Measurements of turbulence profiles in the troposphere. , 1972 .

[15]  D. Fried Limiting Resolution Looking Down Through the Atmosphere , 1966 .

[16]  A. S. Gurvich,et al.  Influence of stratospheric turbulence on infrared imaging , 1995 .

[17]  Michael C. Roggemann,et al.  Optical propagation in non-Kolmogorov atmospheric turbulence , 1995, Defense, Security, and Sensing.

[18]  J C Dainty,et al.  Use of a Shack-Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum. , 1995, Optics letters.

[19]  J H Brown,et al.  Radar and optical measurements of C2n. , 1982, Applied optics.

[20]  R. Fante Electromagnetic beam propagation in turbulent media , 1975, Proceedings of the IEEE.

[21]  C. Coulman,et al.  Optical seeing-mechanism of formation of thin turbulent laminae in the atmosphere. , 1995, Applied optics.

[22]  H. Luce,et al.  An improved interpretation of VHF oblique radar echoes by a direct balloon C2n estimation using a horizontal pair of sensors , 1997 .

[23]  Norman S. Kopeika,et al.  Validity of Kolmogorov turbulence at higher elevations , 2004, SPIE LASE.