Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations

Received 13 June 2004; revised 1 February 2005; accepted 3 March 2005; published 3 May 2005. [1] The lidar (extinction-to-backscatter) ratios at 0.55 and 1.02 mm and the spectral lidar, extinction, and backscatter ratios of climatically relevant aerosol species are computed on the basis of selected retrievals of aerosol properties from 26 Aerosol Robotic Network (AERONET) sites across the globe. The values, obtained indirectly from sky radiance and solar transmittance measurements, agree very well with values from direct observations. Low mean values of the lidar ratio, Sa, at 0.55 mm for maritime (27 sr) aerosols and desert dust (42 sr) are clearly distinguishable from biomass burning (60 sr) and urban/industrial pollution (71 sr). The effects of nonsphericity of mineral dust are shown, demonstrating that particle shape must be taken into account in any spaceborne lidar inversion scheme. A new aerosol model representing pollution over Southeast Asia is introduced since lidar (58 sr), color lidar, and extinction ratios in this region are distinct from those over other urban/industrial centers, owing to a greater number of large particles relative to fine particles. This discrimination promises improved estimates of regional climate forcing by aerosols containing black carbon and is expected to be of utility to climate modeling and remote sensing communities. The observed variability of the lidar parameters, combined with current validated aerosol data products from Moderate Resolution Imaging Spectroradiometer (MODIS), will afford improved accuracy in the inversion of spaceborne lidar data over both land and ocean.

[1]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[2]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[3]  R. Shorthill,et al.  Light scattering from particles of regular and irregular shape , 1981 .

[4]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[5]  S. C. Hill,et al.  Light scattering by size/shape distributions of soil particles and spheroids. , 1984, Applied optics.

[6]  William D. Jones,et al.  Southern Hemisphere tropospheric aerosol backscatter measurements - Implications for a laser wind system , 1991 .

[7]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[8]  A. John Mallinckrodt,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1993 .

[9]  S. Young,et al.  Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols , 1993 .

[10]  Robert J. Charlson,et al.  Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer , 1996 .

[11]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[12]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[13]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[14]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[15]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[16]  J. Rosen,et al.  Measurement of extinction‐to‐backscatter ratio for near‐surface aerosols , 1997 .

[17]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[18]  B. Holben,et al.  Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment , 1998 .

[19]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[20]  J. Ackermann The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study , 1998 .

[21]  G. S. Kent,et al.  LITE and SAGE II measurements of aerosols in the southern hemisphere upper troposphere , 1998 .

[22]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[23]  J. D. Wheeler,et al.  Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific Northwest , 1999 .

[24]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[25]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[26]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[27]  Lorraine A. Remer,et al.  ARM Southern Great Plains Site Observations of the Smoke Pall Associated with the 1998 Central American Fires , 2000 .

[28]  Albert Ansmann,et al.  Vertical profiling of the Indian aerosol plume with six‐wavelength lidar during INDOEX: A first case study , 2000 .

[29]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[30]  Alexander Smirnov,et al.  Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements , 2000 .

[31]  Mark J. Rood,et al.  In situ measurement of the aerosol extinction‐to‐backscatter ratio at a polluted continental site , 2000 .

[32]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[33]  Albert Ansmann,et al.  Physical properties of the Indian aerosol plume derived from six‐wavelength lidar Observations on 25 March 1999 of the Indian Ocean Experiment , 2000 .

[34]  John A. Reagan,et al.  ACE-2 multiple angle micro-pulse lidar observations from Las Galletas, Tenerife, Canary Islands , 2000 .

[35]  A. Ansmann,et al.  European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast , 2001 .

[36]  Albert Ansmann,et al.  One‐year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar , 2001 .

[37]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[38]  James R. Johnson,et al.  Lidar measurements during Aerosols99 , 2001 .

[39]  L. Brasseur,et al.  Raman lidar measurements of the aerosol extinction‐to‐backscatter ratio over the Southern Great Plains , 2001 .

[40]  Yoram J. Kaufman,et al.  Absorption of sunlight by dust as inferred from satellite and ground‐based remote sensing , 2001 .

[41]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[42]  Jost Heintzenberg,et al.  Shape of atmospheric mineral particles collected in three Chinese arid‐regions , 2001 .

[43]  Yoram J. Kaufman,et al.  Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum , 2001 .

[44]  Michael Q. Wang,et al.  Black carbon emissions in China , 2001 .

[45]  Albert Ansmann,et al.  Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six‐wavelength lidar: 2. Case studies , 2001 .

[46]  Glenn E. Shaw,et al.  Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze , 2001 .

[47]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[48]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[49]  J. Hansen,et al.  Climate Effects of Black Carbon Aerosols in China and India , 2002, Science.

[50]  Zhaoyan Liu,et al.  Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.

[51]  M. Wendisch,et al.  Optical and microphysical characterization of biomass‐ burning and industrial‐pollution aerosols from‐ multiwavelength lidar and aircraft measurements , 2002 .

[52]  B. Holben,et al.  Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model , 2002 .

[53]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[54]  Takashi Shibata,et al.  Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan , 2002 .

[55]  Teruyuki Nakajima,et al.  Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai , 2002 .

[56]  T. Eck,et al.  Optical Properties of Atmospheric Aerosol in Maritime Environments , 2002 .

[57]  Albert Ansmann,et al.  European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry , 2002 .

[58]  A. Ansmann,et al.  Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust , 2002 .

[59]  T. Eck,et al.  Atmospheric Aerosol Optical Properties in the Persian Gulf , 2002 .

[60]  Ellsworth J. Welton,et al.  Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars , 2002 .

[61]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[62]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[63]  C. Zerefos,et al.  Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode , 2003 .

[64]  O. Boucher,et al.  Aerosol absorption over the clear‐sky oceans deduced from POLDER‐1 and AERONET observations , 2003 .

[65]  Yoram J. Kaufman,et al.  Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing , 2003 .

[66]  M. Perrone,et al.  Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization. , 2003, Applied optics.

[67]  Alexander Smirnov,et al.  Comparison of size and morphological measurements of coarse mode dust particles from Africa , 2003 .

[68]  P. Formenti,et al.  Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum , 2003 .

[69]  B. Holben,et al.  Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000 , 2003 .

[70]  David S. Covert,et al.  A Study of the Extinction-to-Backscatter Ratio of Marine Aerosol during the Shoreline Environment Aerosol Study* , 2003 .

[71]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[72]  Makiko Sato,et al.  Global atmospheric black carbon inferred from AERONET , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Yoram J. Kaufman,et al.  Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements , 2003, IEEE Trans. Geosci. Remote. Sens..

[74]  Albert Ansmann,et al.  Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer , 2003 .

[75]  Brent N. Holben,et al.  Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the Arrex and Safari-2000 Dry Season Experiments , 2003 .

[76]  K. Carder,et al.  Columnar aerosol single‐scattering albedo and phase function retrieved from sky radiance over the ocean: Measurements of Saharan dust , 2003 .

[77]  J. Privette,et al.  Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000) , 2003 .

[78]  David S. Covert,et al.  Variability of aerosol optical properties derived from in situ aircraft measurements during ACE‐Asia , 2003 .

[79]  Albert Ansmann,et al.  Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003 , 2003 .

[80]  Hiroaki Kuze,et al.  An intercomparison of lidar‐derived aerosol optical properties with airborne measurements near Tokyo during ACE‐Asia , 2003 .

[81]  Gian Paolo Gobbi,et al.  Modeling the Aerosol Extinction versus Backscatter Relationship for Lidar Applications: Maritime and Continental Conditions , 2004 .

[82]  Albert Ansmann,et al.  Multiyear aerosol observations with dual‐wavelength Raman lidar in the framework of EARLINET , 2004 .

[83]  A. Ansmann,et al.  Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer , 2004 .

[84]  Yoram J. Kaufman,et al.  Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations , 2004 .

[85]  Olga V. Kalashnikova,et al.  Modeling the radiative properties of nonspherical soil-derived mineral aerosols , 2004 .