Quantum Isometry group of dual of finitely generated discrete groups and quantum groups

We study quantum isometry groups, denoted by $\mathbb{Q}(\Gamma, S)$, of spectral triples on $C^*_r(\Gamma)$ for a finitely generated discrete group coming from the word-length metric with respect to a symmetric generating set $S$. We first prove a few general results about $\mathbb{Q}(\Gamma, S)$ including : \begin{itemize} \item For a group $\Gamma$ with polynomial growth property, the dual of $\mathbb{Q}(\Gamma, S)$ has polynomial growth property provided the action of $\mathbb{Q}(\Gamma,S)$ on $C^*_r(\Gamma)$ has full spectrum, \item $\mathbb{Q}(\Gamma, S) \cong QISO(\hat{\Gamma}, d)$ for any abelian $\Gamma$, where $d$ is a suitable metric on the dual compact abelian group $\hat{\Gamma}$. \end{itemize} We then carry out explicit computations of $\mathbb{Q}(\Gamma,S)$ for several classes of examples including free and direct product of cyclic groups, Baumslag-Solitar group, Coxeter groups etc. In particular, we have computed quantum isometry groups of all finitely generated abelian groups which do not have factors of the form $\mathbb{Z}_2^k$ or $\mathbb{Z}_4^l$ for some $k,l$ in the direct product decomposition into cyclic subgroups.

[1]  Eugene P. Wigner,et al.  80 Years of Professor Wigner's Seminal Work "On Unitary Representations of the Inhomogeneous Lorentz Group" , 2021 .

[2]  A. Mandal Quantum isometry group of dual of finitely generated discrete groups- $\textrm{II}$ , 2015, 1504.02240.

[3]  J. Zacharias,et al.  Compact quantum metric spaces from quantum groups of rapid decay , 2014, 1406.0771.

[4]  Debashish Goswami,et al.  Rigidity of action of compact quantum groups on compact, connected manifolds , 2013 .

[5]  Debashish Goswami,et al.  Non-existence of faithful isometric action of compact quantum groups on compact, connected Riemannian manifolds , 2013, 1309.1294.

[6]  Debashish Goswami,et al.  Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles ? , 2013, 1307.4850.

[7]  Adam G. Skalski,et al.  Projective limits of quantum symmetry groups and the doubling construction for Hopf algebras , 2013, 1305.4589.

[8]  S. Neshveyev,et al.  Deformation of C⁎-algebras by cocycles on locally compact quantum groups , 2013, 1301.4897.

[9]  Huichi Huang Invariant subsets under compact quantum group actions , 2012, 1210.5782.

[10]  Daowen Qiu,et al.  Quantum isometry groups for dihedral group D2(2n+1)☆ , 2012 .

[11]  Debashish Goswami Existence and examples of quantum isometry group for a class of compact metric spaces , 2012, 1205.6099.

[12]  Adam G. Skalski,et al.  Quantum symmetry groups of C*‐algebras equipped with orthogonal filtrations , 2011, 1109.6184.

[13]  P. Sołtan,et al.  Quantum isometry groups of symmetric groups , 2011, 1107.1657.

[14]  Adam G. Skalski,et al.  Quantum isometry groups of duals of free powers of cyclic groups , 2010, 1011.5400.

[15]  Adam G. Skalski,et al.  Two-parameter families of quantum symmetry groups , 2010, 1009.4845.

[16]  Adam G. Skalski,et al.  Quantum isometry groups of noncommutative manifolds associated to group C∗-algebras , 2010, 1002.2551.

[17]  Adam G. Skalski,et al.  Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.

[18]  Debashish Goswami,et al.  Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.

[19]  T. Banica,et al.  Fusion rules for quantum reflection groups , 2008, 0805.4801.

[20]  Jyotishman Bhowmick Quantum isometry group of the n-tori , 2008, 0803.4434.

[21]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[22]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[23]  B. Collins,et al.  THE HYPEROCTAHEDRAL QUANTUM GROUP , 2007, math/0701859.

[24]  G. Fiore q-quaternions and q-deformed su(2) instantons , 2006, hep-th/0603138.

[25]  T. Banica,et al.  FREE PRODUCT FORMULAE FOR QUANTUM PERMUTATION GROUPS , 2005, Journal of the Institute of Mathematics of Jussieu.

[26]  T. Banica Quantum automorphism groups of homogeneous graphs , 2003, math/0311402.

[27]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[28]  M. Rieffel,et al.  Hyperbolic Group C *-Algebras and Free-Product C *-Algebras as Compact Quantum Metric Spaces , 2003, Canadian Journal of Mathematics.

[29]  J. Bichon Free Wreath Product by the Quantum Permutation Group , 2001, math/0107029.

[30]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[31]  S. Shnider,et al.  Deformation of certain quadratic algebras and the corresponding quantum semigroups , 1998 .

[32]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[33]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[34]  Timothy J. Hodges,et al.  A GUIDE TO QUANTUM GROUPS , 1997 .

[35]  Shuzhou Wang Deformations of compact quantum groups via Rieffel's quantization , 1996 .

[36]  Shuzhou Wang Tensor Products and Crossed Products of Compact Quantum Groups , 1995 .

[37]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[38]  A. Connes Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.

[39]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[40]  N. Martin,et al.  COMPACT METRIC SPACES , 2016 .

[41]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[42]  I︠u︡. I. Manin Quantum groups and non-commutative geometry , 1988 .