Parcels and particles: Markov blankets in the brain

At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions—and analyses—of distributed brain responses: namely, functional segregation and integration. There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed effective connectivity that mediates neuronal message passing and dynamics on neuronal circuits. The second phenomenological approach usually characterizes undirected functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks, self-organized criticality, dynamical instability, and so on. This paper describes a treatment of effective connectivity that speaks to the emergence of intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in the self-organization of far from equilibrium systems. Using the apparatus of the renormalization group, we show that much of the phenomenology found in network neuroscience is an emergent property of a particular partition of neuronal states, over progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs to the phenomenology of intrinsic brain networks.

[1]  S. De Monte,et al.  Coherent regimes of globally coupled dynamical systems. , 2002, Physical review letters.

[2]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[3]  S. Ramaswamy The Mechanics and Statistics of Active Matter , 2010, 1004.1933.

[4]  Karl J. Friston,et al.  The graphical brain: Belief propagation and active inference , 2017, Network Neuroscience.

[5]  Michael Breakspear,et al.  Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms , 2019, Nature Communications.

[6]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[7]  J. Mattingley,et al.  A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields , 2016, eLife.

[8]  H. Qian,et al.  Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. , 2005, Biophysical chemistry.

[9]  Henry Kennedy,et al.  Brain structure and dynamics across scales: in search of rules , 2016, Current Opinion in Neurobiology.

[10]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[11]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[12]  Karl J. Friston,et al.  Neural masses and fields in dynamic causal modeling , 2013, Front. Comput. Neurosci..

[13]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[14]  Michael Breakspear,et al.  A Canonical Model of Multistability and Scale-Invariance in Biological Systems , 2012, PLoS Comput. Biol..

[15]  久保 亮五,et al.  H. Haken: Synergetics; An Introduction Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, Berlin and Heidelberg, 1977, viii+325ページ, 251×17.5cm, 11,520円. , 1978 .

[16]  E. Bullmore,et al.  Behavioral / Systems / Cognitive Functional Connectivity and Brain Networks in Schizophrenia , 2010 .

[17]  F. Schwabl,et al.  Phase Transitions, Scale Invariance, Renormalization Group Theory, and Percolation , 2002 .

[18]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[19]  Karl J. Friston,et al.  Network constraints in scale free dynamical systems. , 2019 .

[20]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[21]  Adeel Razi,et al.  On nodes and modes in resting state fMRI , 2014, NeuroImage.

[22]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[23]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[24]  T. Ge,et al.  Resting brain dynamics at different timescales capture distinct aspects of human behavior , 2019, Nature Communications.

[25]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[26]  David Poeppel,et al.  Cortical oscillations and speech processing: emerging computational principles and operations , 2012, Nature Neuroscience.

[27]  B. Biswal,et al.  Simultaneous assessment of flow and BOLD signals in resting‐state functional connectivity maps , 1997, NMR in biomedicine.

[28]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[29]  Viktor K. Jirsa,et al.  A theoretical model of phase transitions in the human brain , 1994, Biological Cybernetics.

[30]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[31]  Leonardo L. Gollo,et al.  Criticality in the brain: A synthesis of neurobiology, models and cognition , 2017, Progress in Neurobiology.

[32]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[33]  Karl J. Friston,et al.  Large-scale DCMs for resting-state fMRI , 2017, Network Neuroscience.

[34]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[35]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[36]  Karl J. Friston,et al.  Post hoc Bayesian model selection , 2011, NeuroImage.

[37]  Yian Ma,et al.  Potential function in dynamical systems and the relation with Lyapunov function , 2011, Proceedings of the 30th Chinese Control Conference.

[38]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[39]  F. Zhang,et al.  The potential and flux landscape theory of evolution. , 2012, The Journal of chemical physics.

[40]  P. Ao,et al.  Laws in Darwinian Evolutionary Theory , 2005, ArXiv.

[41]  Illtyd Trethowan Causality , 1938 .

[42]  Christoph Kayser,et al.  Complex Times for Earthquakes, Stocks, and the Brain's Activity , 2010, Neuron.

[43]  William A. Sethares,et al.  Rethinking Measures of Functional Connectivity via Feature Extraction , 2020, Scientific Reports.

[44]  R. Nieuwenhuys The neocortex , 1994, Anatomy and Embryology.

[45]  James A. Roberts,et al.  Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms , 2011, The Journal of Neuroscience.

[46]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[47]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[48]  Tim Sanchez,et al.  Topology and dynamics of active nematic vesicles , 2014, Science.

[49]  Karl J. Friston,et al.  Some Interesting Observations on the Free Energy Principle , 2020, Entropy.

[50]  Adeel Razi,et al.  Bayesian model reduction and empirical Bayes for group (DCM) studies , 2016, NeuroImage.

[51]  Dante R Chialvo,et al.  Brain organization into resting state networks emerges at criticality on a model of the human connectome. , 2012, Physical review letters.

[52]  Selen Atasoy,et al.  Human brain networks function in connectome-specific harmonic waves , 2016, Nature Communications.

[53]  Alejandro Ribeiro,et al.  A Graph Signal Processing Perspective on Functional Brain Imaging , 2018, Proceedings of the IEEE.

[54]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[55]  Karl J. Friston,et al.  Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM , 2014, NeuroImage.

[56]  Danielle S Bassett,et al.  The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure , 2016, Scientific Reports.

[57]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[58]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[59]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[60]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[61]  Andy Clark,et al.  How to Knit Your Own Markov Blanket , 2017 .

[62]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[63]  Adeel Razi,et al.  The Connected Brain: Causality, models, and intrinsic dynamics , 2016, IEEE Signal Processing Magazine.

[64]  Karl J. Friston,et al.  The Anatomy of Inference: Generative Models and Brain Structure , 2018, Front. Comput. Neurosci..

[65]  Karl J. Friston,et al.  The Markov blankets of life: autonomy, active inference and the free energy principle , 2018, Journal of The Royal Society Interface.

[66]  Karl J. Friston,et al.  A Hierarchy of Time-Scales and the Brain , 2008, PLoS Comput. Biol..

[67]  M P Young,et al.  Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  B Cessac,et al.  Lyapunov exponents and transport in the Zhang model of self-organized criticality. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Georg B. Keller,et al.  Predictive Processing: A Canonical Cortical Computation , 2018, Neuron.

[70]  S. Jacobson,et al.  The morphology and laminar distribution of cortico-pulvinar neurons in the Rhesus monkey , 1977, Experimental Brain Research.

[71]  H. Meyer-Ortmanns,et al.  On the role of frustration in excitable systems. , 2010, Chaos.

[72]  Michael Breakspear,et al.  Dynamics of a neural system with a multiscale architecture , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  Somwrita Sarkar,et al.  Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment , 2016, NeuroImage.

[74]  Matthieu Gilson,et al.  Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome , 2016, PLoS Comput. Biol..

[75]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[76]  Kimberly L. Stachenfeld,et al.  The hippocampus as a predictive map , 2017, Nature Neuroscience.

[77]  Adeel Razi,et al.  A DCM for resting state fMRI , 2014, NeuroImage.

[78]  Karl J. Friston Life as we know it , 2013, Journal of The Royal Society Interface.

[79]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[80]  P. Ao,et al.  Nonequilibrium steady state of a stochastic system driven by a nonlinear drift force. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  G. Buzsáki,et al.  Cell Assembly Sequences Arising from Spike Threshold Adaptation Keep Track of Time in the Hippocampus , 2011, The Journal of Neuroscience.

[82]  J. Carr Applications of Centre Manifold Theory , 1981 .

[83]  D. V. van Essen,et al.  Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates , 2016, PLoS biology.

[84]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[85]  Karl J. Friston,et al.  The Hierarchical Organization of the Default, Dorsal Attention and Salience Networks in Adolescents and Young Adults , 2017, Cerebral cortex.

[86]  Seunghwan Kim,et al.  Self-organized criticality and scale-free properties in emergent functional neural networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[88]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[89]  P. Ao Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. II: construction of SDS with nonlinear force and multiplicative noise , 2004, 0803.4356.

[90]  B. Finlay Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains , 2016, PLoS biology.

[91]  Joachim M. Buhmann,et al.  Regression DCM for fMRI , 2017, NeuroImage.

[92]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[93]  Pieter R. Roelfsema,et al.  Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex , 2017, NeuroImage.

[94]  Georg Northoff,et al.  Is temporo-spatial dynamics the "common currency" of brain and mind? In Quest of "Spatiotemporal Neuroscience". , 2020, Physics of life reviews.

[95]  Karl J. Friston,et al.  Free Energy, Value, and Attractors , 2011, Comput. Math. Methods Medicine.

[96]  Anne-Lise Giraud,et al.  Combining predictive coding with neural oscillations optimizes on-line speech processing , 2018 .

[97]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[98]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[99]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[100]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[101]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[102]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[103]  Kestutis Pyragas Conditional Lyapunov exponents from time series , 1997 .

[104]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[105]  Andreas Daffertshofer,et al.  Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model , 2010, Front. Hum. Neurosci..

[106]  André Elisseeff,et al.  Using Markov Blankets for Causal Structure Learning , 2008, J. Mach. Learn. Res..

[107]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[109]  Karl J. Friston,et al.  Markov blankets, information geometry and stochastic thermodynamics , 2019, Philosophical Transactions of the Royal Society A.

[110]  Adeel Razi,et al.  Construct validation of a DCM for resting state fMRI , 2015, NeuroImage.

[111]  Michael W. Spratling Predictive coding as a model of biased competition in visual attention , 2008, Vision Research.

[112]  S. Grossberg Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. , 2007, Progress in brain research.

[113]  G. P. Pavlos,et al.  Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma, Part one: Sunspot dynamics , 2012 .

[114]  Karl J. Friston A free energy principle for a particular physics , 2019, 1906.10184.

[115]  Michael Breakspear,et al.  The multiscale character of evoked cortical activity , 2006, NeuroImage.

[116]  Karl J. Friston,et al.  Granger causality revisited , 2014, NeuroImage.

[117]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[118]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[119]  Gustavo Deco,et al.  Using the Virtual Brain to Reveal the Role of Oscillations and Plasticity in Shaping Brain's Dynamical Landscape , 2014, Brain Connect..