A Sib-Pair Regression Model of Linkage Disequilibrium for Quantitative Traits

A multiple-regression model is described for the detection of linkage disequilibrium in quantitative trait loci. The model is developed for application to large numbers of single nucleotide polymorphism (SNP) markers genotyped on small nuclear families. Parental data are not required by the method, although it provides a direct means to test quantitative trait locus-marker allele association and to determine whether any such association is attributable to linkage disequilibrium or population admixture. Analytical expectations for the regression coefficients are derived, allowing direct interpretation of the parameter estimates. Simulation studies indicate a substantial improvement in power over classical linkage studies of sibling pairs and show the effects of population admixture on the model outcomes.

[1]  R C Elston,et al.  Transmission/disequilibrium tests for quantitative traits , 2001, Genetic epidemiology.

[2]  J. Pritchard,et al.  Use of unlinked genetic markers to detect population stratification in association studies. , 1999, American journal of human genetics.

[3]  P. Lijnzaad,et al.  A physical map of 30,000 human genes. , 1998, Science.

[4]  F. Collins,et al.  New goals for the U.S. Human Genome Project: 1998-2003. , 1998, Science.

[5]  M. Bittner,et al.  Data management and analysis for gene expression arrays , 1998, Nature Genetics.

[6]  E. Boerwinkle,et al.  DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene , 1998, Nature Genetics.

[7]  A. Chakravarti It's raining SNPs, hallelujah? , 1998, Nature Genetics.

[8]  M. Boehnke,et al.  Genetic association mapping based on discordant sib pairs: the discordant-alleles test. , 1998, American journal of human genetics.

[9]  W. Ewens,et al.  A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. , 1998, American journal of human genetics.

[10]  Francis S. Collins,et al.  Variations on a Theme: Cataloging Human DNA Sequence Variation , 1997, Science.

[11]  B S Weir,et al.  Tests for linkage and association in nuclear families. , 1997, American journal of human genetics.

[12]  J. Todd,et al.  Evidence by allelic association-dependent methods for a type 1 diabetes polygene (IDDM6) on chromosome 18q21. , 1997, Human molecular genetics.

[13]  D Rabinowitz,et al.  A transmission disequilibrium test for quantitative trait loci. , 1997, Human heredity.

[14]  D. Curtis,et al.  Use of siblings as controls in case‐control association studies , 1997, Annals of human genetics.

[15]  W J Ewens,et al.  The TDT and other family-based tests for linkage disequilibrium and association. , 1996, American journal of human genetics.

[16]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[17]  E. Lander,et al.  Complete multipoint sib-pair analysis of qualitative and quantitative traits. , 1995, American journal of human genetics.

[18]  D. Curtis,et al.  An extended transmission/disequilibrium test (TDT) for multi‐allele marker loci , 1995, Annals of human genetics.

[19]  N Risch,et al.  Extreme discordant sib pairs for mapping quantitative trait loci in humans. , 1995, Science.

[20]  L. Cardon,et al.  Multipoint interval mapping of quantitative trait loci, using sib pairs. , 1995, American journal of human genetics.

[21]  J. Todd,et al.  Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus , 1995, Nature Genetics.

[22]  D W Fulker,et al.  The power of interval mapping of quantitative trait loci, using selected sib pairs. , 1994, American journal of human genetics.

[23]  L. Eaves,et al.  Locating human quantitative trait loci: Guidelines for the selection of sibling pairs for genotyping , 1994, Behavior genetics.

[24]  B. Pennington,et al.  Reading Disabilities: Genetic and Neurological Influences , 1994 .

[25]  W. Ewens,et al.  Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). , 1993, American journal of human genetics.

[26]  L. Cardon,et al.  Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci , 1991 .

[27]  G. Carey,et al.  Linkage analysis of quantitative traits: increased power by using selected samples. , 1991, American journal of human genetics.

[28]  D. Fulker,et al.  Multiple regression analysis of twin data: etiology of deviant scores versus individual differences. , 1988, Acta geneticae medicae et gemellologiae.

[29]  C. Falk,et al.  Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations , 1987, Annals of human genetics.

[30]  E. Boerwinkle,et al.  The use of measured genotype information in the analysis of quantitative phenotypes in man. , 1987, Annals of human genetics.

[31]  E. Boerwinkle,et al.  The use of measured genotype information in the analysis of quantitative phenotypes in man , 1986, Annals of human genetics.

[32]  D. Fulker,et al.  Multiple regression analysis of twin data , 1985, Behavior genetics.

[33]  R. Elston,et al.  The investigation of linkage between a quantitative trait and a marker locus , 1972, Behavior genetics.

[34]  D. Falconer,et al.  Introduction to Quantitative Genetics. , 1962 .

[35]  J K Hewitt,et al.  Combined linkage and association sib-pair analysis for quantitative traits. , 1999, American journal of human genetics.

[36]  R. Elston,et al.  Testing the association between polymorphic markers and quantitative traits in pedigrees , 1987, Genetic epidemiology.

[37]  D. Fulker,et al.  Multiple regression analysis of twin data obtained from selected samples , 1986, Genetic epidemiology.