A novel face recognition system using hybrid neural and dual eigenspaces methods

In this paper, we present an automated face recognition (AFR) system that contains two components: eye detection and face recognition. Based on invariant radial basis function (IRBF) networks and knowledge rules of facial topology, a hybrid neural method is proposed to localize human eyes and segment the face region from a scene. A dual eigenspaces method (DEM) is then developed to extract algebraic features of the face and perform the recognition task with a two-layer minimum distance classifier. Experimental results illustrate that the proposed system is effective and robust.

[1]  Thomas S. Huang,et al.  Human face detection in a complex background , 1994, Pattern Recognit..

[2]  Venu Govindaraju,et al.  Locating human faces in photographs , 1996, International Journal of Computer Vision.

[3]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[4]  John Zukowski,et al.  Parallel VLSI neural system design , 1998 .

[5]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[6]  Alice J. O'Toole,et al.  Connectionist models of face processing: A survey , 1994, Pattern Recognit..

[7]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  David Zhang,et al.  Automated Biometrics: Technologies and Systems , 2000 .

[9]  Shigeaki Watanabe,et al.  Subspace method to pattern recognition , 1973 .

[10]  Raphaël Féraud,et al.  A Fast and Accurate Face Detector Based on Neural Networks , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J. R. Hewit,et al.  Artificial neural networks for locating eyes in facial images , 1994 .

[12]  LinShang-Hung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997 .

[13]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[14]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[15]  Ming Zhang,et al.  Face recognition using artificial neural network group-based adaptive tolerance (GAT) trees , 1996, IEEE Trans. Neural Networks.

[16]  Changshui Zhang,et al.  Directional symmetry transform for human face location , 1999 .

[17]  Azriel Rosenfeld,et al.  Eye detection in a face image using linear and nonlinear filters , 2001, Pattern Recognit..

[18]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Sun-Yuan Kung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997, IEEE Trans. Neural Networks.