Experimental validation of volume-based comparison for double-McCormick relaxations

Volume is a natural geometric measure for comparing polyhedral relaxations of non-convex sets. Speakman and Lee gave volume formulae for comparing relaxations of trilinear monomials, quantifying the strength of various natural relaxations. Their work was motivated by the spatial branch-and-bound algorithm for factorable mathematical-programming formulations. They mathematically analyzed an important choice that needs to be made whenever three or more terms are multiplied in a formulation. We experimentally substantiate the relevance of their main results to the practice of global optimization, by applying it to difficult box cubic problems (boxcup). In doing so, we find that, using their volume formulae, we can accurately predict the quality of a relaxation for boxcups based on the (box) parameters defining the feasible region.

[1]  Mustafa Mamat,et al.  Performance Profile Comparison Using Matlab , 2015 .

[2]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[3]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[4]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[5]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[6]  Jon Lee,et al.  The volume of relaxed Boolean-quadric and cut polytopes , 1997, Discret. Math..

[7]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.

[8]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[9]  E. Steingrímsson,et al.  A decomposition of 2-weak vertex-packing polytopes , 1994 .

[10]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[11]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[12]  Jon Lee,et al.  Geometric Comparison of Combinatorial Polytopes , 1994, Discret. Appl. Math..

[13]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes , 2004 .

[14]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[15]  Marco Molinaro,et al.  Approximating polyhedra with sparse inequalities , 2015, Math. Program..

[16]  Jon Lee,et al.  Mixed-integer nonlinear programming: Some modeling and solution issues , 2007, IBM J. Res. Dev..

[17]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[18]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[19]  Jon Lee,et al.  Quantifying Double McCormick , 2017, Math. Oper. Res..

[20]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[21]  E. Steigrímsson,et al.  A decomposition of 2-weak vertex-packing polytopes , 1994, Discret. Comput. Geom..

[22]  Mohamed Omar,et al.  On Volumes of Permutation Polytopes , 2013 .

[23]  Federico Ardila,et al.  Matroid Polytopes and their Volumes , 2010, Discret. Comput. Geom..

[24]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..

[25]  Peter Winkler,et al.  Counting linear extensions is #P-complete , 1991, STOC '91.