暂无分享,去创建一个
[1] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[2] Bernard Haasdonk,et al. A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution , 2021, J. Approx. Theory.
[3] Holger Wendland,et al. Sampling inequalities for sparse grids , 2017, Numerische Mathematik.
[4] Dirk Pflüger,et al. Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario , 2018, Computational Geosciences.
[5] F. J. Narcowich,et al. Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .
[6] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[7] Ronald A. DeVore,et al. Some remarks on greedy algorithms , 1996, Adv. Comput. Math..
[8] G. Santin,et al. Kernel Methods for Surrogate Modeling , 2019, System- and Data-Driven Methods and Algorithms.
[9] Gregory E. Fasshauer,et al. Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.
[10] M. Urner. Scattered Data Approximation , 2016 .
[11] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[12] R. DeVore,et al. Orthogonal Matching Pursuit Under the Restricted Isometry Property , 2015, Constructive Approximation.
[13] Bernard Haasdonk,et al. Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods , 2018, International journal for numerical methods in biomedical engineering.
[14] Robert Schaback,et al. Superconvergence of kernel-based interpolation , 2016, J. Approx. Theory.
[15] Holger Wendland,et al. Approximate Interpolation with Applications to Selecting Smoothing Parameters , 2005, Numerische Mathematik.
[16] Vladimir Temlyakov,et al. CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .
[17] Bernard Haasdonk,et al. Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation , 2016, 1612.02672.
[18] Ronald DeVore,et al. Greedy Algorithms for Reduced Bases in Banach Spaces , 2012, Constructive Approximation.
[19] Bernard Haasdonk,et al. Greedy Kernel Approximation for Sparse Surrogate Modeling , 2018 .
[20] Holger Wendland,et al. Adaptive greedy techniques for approximate solution of large RBF systems , 2000, Numerical Algorithms.
[21] Robert Schaback,et al. A Newton basis for Kernel spaces , 2009, J. Approx. Theory.
[22] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[23] Robert Schaback,et al. Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..
[24] Holger Wendland,et al. Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..
[25] Robert Schaback,et al. Bases for kernel-based spaces , 2011, J. Comput. Appl. Math..
[26] Emma Perracchione,et al. A greedy non-intrusive reduced order model for shallow water equations , 2021, J. Comput. Phys..
[27] R. Schaback,et al. Numerical Techniques Based on Radial Basis Functions , 2000 .
[28] Bernard Haasdonk,et al. Sampling based approximation of linear functionals in Reproducing Kernel Hilbert Spaces , 2021, BIT Numerical Mathematics.
[29] Holger Wendland,et al. Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..
[30] Bernard Haasdonk,et al. Data-driven surrogates of value functions and applications to feedback control for dynamical systems , 2018 .
[31] Fred J. Hickernell,et al. On Dimension-independent Rates of Convergence for Function Approximation with Gaussian Kernels , 2012, SIAM J. Numer. Anal..
[32] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[33] Stefan Müller,et al. Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden , 2009 .
[34] Bernard Haasdonk,et al. A Vectorial Kernel Orthogonal Greedy Algorithm , 2013 .