Anisotropic elasticity of jarosite: A high-P synchrotron XRD study

Abstract The elastic properties of jarosite were investigated using synchrotron X-ray diffraction coupled with a multi-anvil apparatus at pressures up to 8.1 GPa. With increasing pressure, the c dimension contracts much more rapidly than a, resulting in a large anisotropy in compression. This behavior is consistent with the layered nature of the jarosite structure, in which the (001) [Fe(O,OH)6]/[SO4] sheets are held together via relatively weak K-O and hydrogen bonds. Fitting of the measured unit-cell parameters to the second-order Birch-Murnaghan equation of state yielded a bulk modulus of 55.7 ± 1.4 GPa and zero-pressure linear compressibilities of 3.2 × 10-3 GPa-1 for the a axis and 13.6 × 10-3 GPa-1 for the c axis. These parameters represent the first experimental determination of the elastic properties of jarosite.

[1]  Ronald C. Peterson,et al.  Jarosite-hydronium jarosite solid-solution series with full iron site occupancy: Mineralogy and crystal chemistry , 2007 .

[2]  A. Navrotsky,et al.  Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites , 2003 .

[3]  U. Becker,et al.  AFM observations and simulations of jarosite growth at the molecular scale: probing the basis for the incorporation of foreign ions into jarosite as a storage mineral , 2001 .

[4]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[5]  Ronald I. Smith,et al.  Magnetic properties of pure and diamagnetically doped jarosites: Model kagome antiferromagnets with variable coverage of the magnetic lattice , 2000 .

[6]  Jill R. Scott,et al.  Glycine identification in natural jarosites using laser desorption Fourier transform mass spectrometry: implications for the search for life on Mars. , 2008, Astrobiology.

[7]  Yusheng Zhao,et al.  Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics , 2008 .

[8]  A. Navrotsky,et al.  Jarosite stability on Mars , 2004 .

[9]  Thomas J. Ahrens,et al.  Equation of State , 1993 .

[10]  R. Ballhorn,et al.  Artificial Compounds of the Crandallite Type; A new Material for Separation and Immobilization of Fission Products , 1988 .

[11]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[12]  J. Jambor,et al.  Alunite-Jarosite Crystallography, Thermodynamics, and Geochronology , 2000 .

[13]  D. Nocera,et al.  Magnetism of pure iron jarosites , 2003 .

[14]  T. Duffy,et al.  Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6 , 2006 .

[15]  L. Daemen,et al.  Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study , 2010 .

[16]  E. Tiekink,et al.  HINSDALITE AND PLUMBOGUMMITE, THEIR ATOMIC ARRANGEMENTS AND DISORDERED LEAD SITES , 1999 .

[17]  Daniel L. Decker,et al.  High‐Pressure Equation of State for NaCl, KCl, and CsCl , 1971 .

[18]  D. Weidner,et al.  Yield strength at high pressure and temperature , 1994 .

[19]  J. Papike,et al.  Implications of Martian and Terrestrial Jarosite. A Crystal Chemical Perspective , 2006 .

[20]  S. Maegawa,et al.  Magnetic structure of the kagom lattice antiferromagnet potassium jarosite KFe3(OH)6(SO4)2 , 2000 .

[21]  Don L. Anderson,et al.  Brief report: The bulk modulus‐volume relationship for oxides , 1970 .

[22]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[23]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .