Model-order reduction of kth order MIMO dynamical systems using block kth order Krylov subspaces

In this article, we study numerical methods for model-order reduction of large-scale kth order multi-input multi-output dynamical systems. We propose a new structure-preserving projection method, of which the projection subspace is a block kth order Krylov subspace based on a square matrix sequence and an initial rectangle matrix. A procedure, named as block kth order Arnoldi process, is presented for establishing an orthonormal basis of the projection subspace. Moreover, we show that the reduced system constructed by the new method has the same order of approximation as the standard block Krylov subspace method via linearization. Numerical experiments report the effectiveness of this method.

[1]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[2]  Zhaojun Bai,et al.  Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method , 2005, SIAM J. Sci. Comput..

[3]  A. Zients Andy , 2003 .

[4]  Roy R. Craig,et al.  Structural Dynamics: An Introduction to Computer Methods , 1981 .

[5]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[8]  Yimin Wei,et al.  Model-order reduction of large-scale kth-order linear dynamical systems via a kth-order Arnoldi method , 2010, Int. J. Comput. Math..

[9]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[10]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[11]  Liang Bao,et al.  Block second-order Krylov subspace methods for large-scale quadratic eigenvalue problems , 2006, Appl. Math. Comput..

[12]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1998, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[15]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[16]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[17]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[18]  Yimin Wei,et al.  Model-order reduction of large-scale second-order MIMO dynamical systems via a block second-order Arnoldi method , 2007, Int. J. Comput. Math..

[19]  R. Craig,et al.  Model reduction and control of flexible structures using Krylov vectors , 1991 .

[20]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[21]  R. Freund Krylov Subspaces Associated with Higher-Order Linear Dynamical Systems , 2005, math/0501484.

[22]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[23]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .