Tripartite quantum discord dynamics in qubits driven by the joint influence of distinct classical noises

We investigate the dynamics of quantum discord in a system of three non-interacting qubits, initially entangled in a Greenberger–Horne–Zeilinger state, in the presence of mixed classical environments. Precisely, the joint impacts of a static noise (SN) and a random telegraphic noise (RTN) are probed, by combining them in two different ways: independent and bipartite system–environment coupling. For both cases, one marginal system is coupled with an environment (say $$E_1$$ E 1 ), and the remaining subsystems are coupled either locally or not with a second environment ( $$E_2$$ E 2 ), and vice versa. We show that quantum discord is more fragile in independent environments than in bipartite ones no matter the Markovianity of the dynamical process, and may exhibit sudden death and revival phenomena. A static noise is more fatal to the survival of quantum discord than a RTN, and its shielding effects are more pronounced as the number of subsystems under its effects increases. The opposite is found for a RTN, where discord robustness is enhanced as the number of affected subsystems increases.

[1]  Hong-Mei Li,et al.  Genuine Tripartite Entanglement Dynamics and Transfer in a Triple Jaynes-Cummings Model , 2016 .

[2]  Jun-Hong An,et al.  Non-Markovian effects on quantum-communication protocols , 2010 .

[3]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[4]  Paolo Bordone,et al.  Analytical expression of genuine tripartite quantum discord for symmetrical X-states , 2014, Quantum Inf. Process..

[5]  Pawel Horodecki,et al.  Distributed correlations and information flows within a hybrid multipartite quantum-classical system , 2015 .

[6]  Pernel Nguenang Nganyo,et al.  Frozen entanglement and quantum correlations of one-parameter qubit−qutrit states under classical noise effects , 2019, Physics Letters A.

[7]  W. Zurek,et al.  Introducing Quantum Discord , 2001, quant-ph/0105072.

[8]  Fabio Sciarrino,et al.  Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics , 2014, Scientific Reports.

[9]  Eli Biham,et al.  Quantum computing without entanglement , 2003, Theor. Comput. Sci..

[10]  Bo Wang,et al.  Non-Markovian effect on the quantum discord , 2009, 0911.1845.

[11]  Arthur Tsamouo Tsokeng,et al.  Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise , 2018, Quantum Inf. Process..

[12]  Ting Yu,et al.  Sudden death of entanglement: Classical noise effects , 2006 .

[13]  Itzamá López Yáñez,et al.  Tetrapartite entanglement measures of GHZ state with uniform acceleration , 2019, Optik.

[14]  T. Ralph,et al.  Observing the operational significance of discord consumption , 2012, Nature Physics.

[15]  H. Eleuch,et al.  Sudden death and rebirth of entanglement for different dimensional systems driven by a classical random external field , 2015, 1506.01036.

[16]  Qian Dong,et al.  Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames , 2018, Physical Review A.

[17]  Martin Tchoffo,et al.  Dynamics and protection of quantum correlations in a qubit–qutrit system subjected locally to a classical random field and colored noise , 2020, Quantum Inf. Process..

[18]  Heng Fan,et al.  Genuine correlations of tripartite system , 2012, Quantum Inf. Process..

[19]  L. C. Fai,et al.  Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise , 2017 .

[20]  Lara Faoro,et al.  Microscopic origin of low-frequency flux noise in josephson circuits. , 2008, Physical review letters.

[21]  Jaewan Kim,et al.  Entanglement dynamics of three interacting two-level atoms within a common structured environment , 2011 .

[22]  Gautam Vemuri,et al.  Anderson localization with second quantized fields in a coupled array of waveguides , 2010 .

[23]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[24]  Giuseppe Compagno,et al.  Entanglement Trapping in Structured Environments , 2008, 0805.3056.

[25]  Oscar Camacho Nieto,et al.  Concurrence of three Jaynes–Cummings systems , 2018, Quantum Inf. Process..

[26]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[27]  Paolo Bordone,et al.  Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise , 2013, 1302.1430.

[28]  G. Rigolin,et al.  Quantum correlations in spin chains at finite temperatures and quantum phase transitions. , 2010, Physical review letters.

[29]  Claudia Benedetti,et al.  EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS , 2012 .

[30]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[31]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[32]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[33]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[34]  Animesh Datta,et al.  Role of entanglement and correlations in mixed-state quantum computation , 2007 .

[35]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[36]  Oscar Camacho-Nieto,et al.  JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels , 2016, 1609.01538.

[37]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[38]  B. Altshuler,et al.  Decoherence in qubits due to low-frequency noise , 2009, 0904.4597.

[39]  L. C. Fai,et al.  Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise , 2017 .

[40]  Heng Fan,et al.  Correlations in the Grover search , 2009, 0904.2703.

[41]  G. Falci,et al.  Hidden entanglement, system-environment information flow and non-Markovianity , 2014, 1402.1948.

[42]  S. Luo Quantum discord for two-qubit systems , 2008 .

[43]  S. Salimi,et al.  Dynamics of entanglement and non-classical correlation for four-qubit GHZ state , 2015, 1509.06181.

[44]  Claudia Benedetti,et al.  Time-evolution of entanglement and quantum discord of bipartite systems subject to 1/fα noise , 2013, 2013 22nd International Conference on Noise and Fluctuations (ICNF).

[45]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[47]  Animesh Datta,et al.  QUANTUM DISCORD AND QUANTUM COMPUTING — AN APPRAISAL , 2011, 1109.5549.

[48]  Arthur Tsamouo Tsokeng,et al.  Disentanglement and quantum states transitions dynamics in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state , 2018, Quantum Inf. Process..

[49]  V. Vedral Classical correlations and entanglement in quantum measurements. , 2002, Physical review letters.

[50]  P. Bordone,et al.  Validity of the single-particle approach for electron transport in quantum wires assisted by surface acoustic waves , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  R. Zambrini,et al.  Genuine quantum and classical correlations in multipartite systems. , 2011, Physical review letters.

[52]  Mohamad Toutounji,et al.  Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration , 2019, Chinese Physics Letters.

[53]  Claudia Benedetti,et al.  EFFECTS OF CLASSICAL ENVIRONMENTAL NOISE ON ENTANGLEMENT AND QUANTUM DISCORD DYNAMICS , 2012, 1209.4201.

[54]  Zhi-Xi Wang,et al.  Assisted state discrimination without entanglement , 2011, 1111.2645.

[55]  Luis Roa,et al.  Dissonance is required for assisted optimal state discrimination. , 2011, Physical review letters.

[56]  Yoav Lahini,et al.  Classical diffusion of a quantum particle in a noisy environment. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[58]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[59]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[60]  D. Christodoulides,et al.  Quantum correlations in two-particle Anderson localization. , 2010, Physical review letters.

[61]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[62]  DaeKil Park,et al.  Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment , 2016, Quantum Information Processing.

[63]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[64]  Martin Tchoffo,et al.  Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise , 2016 .

[65]  G. Sadiek,et al.  Entanglement dynamics in Heisenberg spin chains coupled to a dissipative environment at finite temperature , 2016, 1604.02689.