Identification of Causal Genetic Drivers of Human Disease through Systems-Level Analysis of Regulatory Networks

[1]  Mariano J. Alvarez,et al.  Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. , 2014, Cancer cell.

[2]  Anne E Carpenter,et al.  ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state. , 2014, Cell reports.

[3]  Andrea Califano,et al.  Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. , 2013, Cancer cell.

[4]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[5]  D. Pe’er,et al.  RHPN2 drives mesenchymal transformation in malignant glioma by triggering RhoA activation. , 2013, Cancer research.

[6]  Raul Rabadan,et al.  The integrated landscape of driver genomic alterations in glioblastoma , 2013, Nature Genetics.

[7]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[8]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[9]  David Tamborero,et al.  Oncodrive-CIS: A Method to Reveal Likely Driver Genes Based on the Impact of Their Copy Number Changes on Expression , 2013, PloS one.

[10]  Huaxi Xu,et al.  Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy , 2013, Nature Reviews Neurology.

[11]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[12]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[13]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[14]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[15]  Andrea Califano,et al.  Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL , 2011, Nature Medicine.

[16]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[17]  Andrea Califano,et al.  The TLX1 oncogene drives aneuploidy in T-cell transformation , 2010, Nature Medicine.

[18]  Benito Munoz,et al.  Towards patient-based cancer therapeutics , 2010, Nature Biotechnology.

[19]  Mariano J. Alvarez,et al.  A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers , 2010, Molecular systems biology.

[20]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[21]  Yuan Qi,et al.  Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA , IDH 1 , EGFR , and NF 1 Citation Verhaak , 2010 .

[22]  Mariano J. Alvarez,et al.  Genome-wide Identification of Post-translational Modulators of Transcription Factor Activity in Human B-Cells , 2009, Nature Biotechnology.

[23]  Wei Keat Lim,et al.  The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. , 2009, Developmental cell.

[24]  R. Dalla‐Favera,et al.  Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma , 2009, Nature.

[25]  Ji Luo,et al.  Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction , 2009, Cell.

[26]  Wei Keat Lim,et al.  Master Regulators Used As Breast Cancer Metastasis Classifier , 2008, Pacific Symposium on Biocomputing.

[27]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[28]  A. Ferrando,et al.  The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia , 2007, The Journal of experimental medicine.

[29]  G. Sumara,et al.  A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. , 2007, Developmental cell.

[30]  K. Nakayama,et al.  Ubiquitin ligases: cell-cycle control and cancer , 2006, Nature Reviews Cancer.

[31]  Jayant P. Menon,et al.  Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. , 2006, Cancer cell.

[32]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[33]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  P. Kleihues,et al.  Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. , 2005, Journal of neuropathology and experimental neurology.

[35]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[36]  R. Stern,et al.  Establishment and characterization of five cell lines derived from human malignant gliomas , 2004, Acta Neuropathologica.

[37]  S. Elledge,et al.  BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3 , 2003, Nature.

[38]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[39]  Ulrich Siebenlist,et al.  Constitutive Nuclear Factor κB Activity Is Required for Survival of Activated B Cell–like Diffuse Large B Cell Lymphoma Cells , 2001, The Journal of experimental medicine.