Studies on the Chemical Structures of Organic Matrices and Their Functions in the Biomineralization Processes of Molluscan Shells

Molluscan shells protect the soft body from predators and the external environment and consist of calcium carbonate in an organic matrix. The interaction between calcium carbonate and the organic matrix forms the microstructure of the molluscan shell. In this review, we discuss several organic molecules that may be important in the formation of the shell microstructure. The iridescent color of pearls is attributed to the characteristic nacreous microstructure of molluscan shells. The Japanese pearl oyster, Pinctada fucata, is used in pearl aquaculture in Japan. The shell of P. fucata consists of two layers, prismatic and nacreous. Prismalin-14 in the prismatic layer interacts with calcium carbonate and binds to chitin. Pif in the nacreous layer interacts with aragonite crystals and plays important roles in forming the organic framework in a compartment-like structure. In contrast, limpets have a crossed lamellar microstructure in their shells. The organic matrices of limpet shells induce the formation of spindle-like aragonite crystals. Recent studies have increased our understanding of the calcification process of molluscan shells, and the findings can be applied to increase yields of high-quality pearls, lowering the cost and energy of pearl aquaculture.

[1]  Inna Dubchak,et al.  The genome portal of the Department of Energy Joint Genome Institute: 2014 updates , 2013, Nucleic Acids Res..

[2]  M. Kunz,et al.  Crystal lattice tilting in prismatic calcite. , 2013, Journal of structural biology.

[3]  H. Nagasawa,et al.  Mollusk shell structures and their formation mechanism1 , 2013 .

[4]  H. Nagasawa,et al.  The Molecular Evolution of the Pif Family Proteins in Various Species of Mollusks , 2013, Marine Biotechnology.

[5]  M. Aumailley,et al.  The laminin family , 2013, Cell adhesion & migration.

[6]  Matthias Mann,et al.  In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea , 2012, Proteome Science.

[7]  H. Nagasawa,et al.  Microstructural Variation of Biogenic Calcite with Intracrystalline Organic Macromolecules , 2012 .

[8]  Julyan H E Cartwright,et al.  Mineral bridges in nacre. , 2011, Journal of structural biology.

[9]  H. Nagasawa,et al.  Identification and Characterisation of a Calcium Carbonate‐Binding Protein, Blue Mussel Shell Protein (BMSP), from the Nacreous Layer , 2011, Chembiochem : a European journal of chemical biology.

[10]  S. Weiner,et al.  Formation of Aragonite Crystals in the Crossed Lamellar Microstructure of Limpet Shells , 2011 .

[11]  I. Zanella-Cléon,et al.  Molecular Evolution of Mollusc Shell Proteins: Insights from Proteomic Analysis of the Edible Mussel Mytilus , 2011, Journal of Molecular Evolution.

[12]  Benjamin Marie,et al.  Novel Proteins from the Calcifying Shell Matrix of the Pacific Oyster Crassostrea gigas , 2011, Marine Biotechnology.

[13]  Arul Marie,et al.  Coupling Proteomics and Transcriptomics for the Identification of Novel and Variant Forms of Mollusk Shell Proteins: A Study with P. margaritifera , 2011, Chembiochem : a European journal of chemical biology.

[14]  Benjamin Marie,et al.  Proteomic Identification of Novel Proteins from the Calcifying Shell Matrix of the Manila Clam Venerupis Philippinarum , 2011, Marine Biotechnology.

[15]  Benjamin Marie,et al.  Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell , 2010, Proteome Science.

[16]  Benjamin Marie,et al.  Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization , 2010, BMC Genomics.

[17]  H. Nagasawa,et al.  Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata. , 2010, Micron.

[18]  K. Saruwatari,et al.  Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques. , 2010, Journal of structural biology.

[19]  J. Macdonald,et al.  Alignment of crystallographic c-Axis throughout the four distinct microstructural layers of the oyster Crassostrea gigas , 2010 .

[20]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[21]  K. Saruwatari,et al.  Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata. , 2009, Biomaterials.

[22]  M. Willinger,et al.  The key role of the surface membrane in why gastropod nacre grows in towers , 2009, Proceedings of the National Academy of Sciences.

[23]  Hiromichi Nagasawa,et al.  The structure–function relationship analysis of Prismalin‐14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata , 2007, The FEBS journal.

[24]  H. Nagasawa,et al.  Identification of Chitin in the Prismatic Layer of the Shell and a Chitin Synthase Gene from the Japanese Pearl Oyster, Pinctada fucata , 2007, Bioscience, biotechnology, and biochemistry.

[25]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[26]  A. Rodríguez-Navarro,et al.  The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves. , 2005, Biomaterials.

[27]  Takeshi Fuchigami,et al.  The shell structure of the Recent Patellogastropoda (Mollusca: Gastropoda) , 2005 .

[28]  A. Ohta,et al.  CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. , 2005, Molecular biology of the cell.

[29]  H. Nagasawa,et al.  Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). , 2004, The Biochemical journal.

[30]  A. Heuer,et al.  Tissue Regeneration in the Shell of the Giant Queen Conch, Strombus gigas , 2004 .

[31]  S. Weiner,et al.  Mollusk Shell Acidic Proteins: In Search of Individual Functions , 2003, Chembiochem : a European journal of chemical biology.

[32]  J. Susini,et al.  In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. , 2003, Journal of structural biology.

[33]  J. Talts,et al.  Beta1 integrin and alpha-dystroglycan binding sites are localized to different laminin-G-domain-like (LG) modules within the laminin alpha5 chain G domain. , 2003, The Biochemical journal.

[34]  E. Zolotoyabko,et al.  Microstructure of natural plywood-like ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction , 2003 .

[35]  R. Hynes,et al.  Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. , 2002, Molecular biology of the cell.

[36]  Erin L. McDearmon,et al.  Contributions of the LG Modules and Furin Processing to Laminin-2 Functions* , 2002, The Journal of Biological Chemistry.

[37]  Daniel Chateigner,et al.  Mollusc shell microstructures and crystallographic textures , 2000 .

[38]  A. Checa A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). , 2000, Tissue & cell.

[39]  Y. Dauphin,et al.  Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. , 2000, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[40]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[41]  S. Tsuda,et al.  Chitin-binding Proteins in Invertebrates and Plants Comprise a Common Chitin-binding Structural Motif* , 2000, The Journal of Biological Chemistry.

[42]  D Tuckwell,et al.  Evolution of von Willebrand factor A (VWA) domains. , 1999, Biochemical Society transactions.

[43]  R. Timpl,et al.  Mutation of a basic sequence in the laminin α2LG3 module leads to a lack of proteolytic processing and has different effects on β1 integrin‐mediated cell adhesion and α‐dystroglycan binding , 1999 .

[44]  H. Müller,et al.  Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors , 1999 .

[45]  Zhicheng Shen,et al.  A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. , 1998, The Journal of biological chemistry.

[46]  R. Timpl,et al.  Structural analysis and proteolytic processing of recombinant G domain of mouse laminin α2 chain , 1998 .

[47]  A. Ohta,et al.  A novel fungal gene encoding chitin synthase with a myosin motor-like domain. , 1997, Biochemical and biophysical research communications.

[48]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[49]  T. Vuocolo,et al.  Characterization of a Major Peritrophic Membrane Protein, Peritrophin-44, from the Larvae of Lucilia cuprina , 1996, The Journal of Biological Chemistry.

[50]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[51]  J. Akai,et al.  Twinned aragonite crystals found in the bivalvian crossed lamellar shell structure , 1994 .

[52]  Y. Yamada,et al.  Recombinant laminin G domain mediates myoblast adhesion and heparin binding. , 1993, The Journal of biological chemistry.

[53]  D. J. Barber,et al.  Electron microscopy of molluscan crossed-lamellar microstructure , 1992 .

[54]  Robert Johnson,et al.  Structural Analysis , 2020, Multiphysics Modeling with Application to Biomedical Engineering.

[55]  S. Weiner,et al.  Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Steve Weiner,et al.  Macromolecules in mollusc shells and their functions in biomineralization , 1984 .

[57]  S. Weiner,et al.  Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation , 1975, Science.

[58]  F. Lippmann Sedimentary Carbonate Minerals , 1973 .

[59]  K. Lonsdale X-Ray Diffraction , 1971, Nature.

[60]  A. Hall,et al.  ENVIRONMENTAL AND BIOLOGICAL CONTROLS ON BIVALVE SHELL MINERALOGY , 1969, Biological reviews of the Cambridge Philosophical Society.

[61]  K. Wada Crystal growth of molluscan shells , 1961 .

[62]  C. Grégoire STRUCTURE OF THE CONCHIOLIN CASES OF THE PRISMS IN MYTILUS EDULIS LINNE , 1961, The Journal of biophysical and biochemical cytology.

[63]  N. Watabe,et al.  Influence of the Organic Matrix on Crystal Type in Molluscs , 1960, Nature.

[64]  Kent J. Bradford,et al.  Structure and Composition , 2013 .

[65]  Benjamin Marie,et al.  Molluscan shell proteins: primary structure, origin, and evolution. , 2008, Current topics in developmental biology.

[66]  John D. Taylor,et al.  The influence of the periostracum on the shell structure of bivalve molluscs , 2005, Calcified Tissue Research.

[67]  A. Ohta,et al.  Isolation of csm1 encoding a class V chitin synthase with a myosin motor-like domain from the rice blast fungus, Pyricularia oryzae. , 1999, FEMS microbiology letters.

[68]  R. Timpl,et al.  Mutation of a basic sequence in the laminin alpha2LG3 module leads to a lack of proteolytic processing and has different effects on beta1 integrin-mediated cell adhesion and alpha-dystroglycan binding. , 1999, FEBS letters.

[69]  S. Weiner,et al.  Acidic macromolecules of mineralized tissues: the controllers of crystal formation. , 1991, Trends in biochemical sciences.

[70]  J. G. Carter Evolutionary Significance of Shell Microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca) , 1991 .

[71]  J. G. Carter,et al.  Polyplacophora, Scaphopoda, Archaeogastropoda and Paragastropoda (Mollusca) Plates 122–134 , 1991 .

[72]  H. Hagler,et al.  Morphological studies on the calcification process in the fresh-water mussel Amblema. , 1980, Tissue & cell.

[73]  A. Lutts,et al.  X-ray diffraction patterns from the prisms of mollusk shells , 1960 .