Sums of squares of the Littlewood-Richardson coefficients and GL(n)-harmonic polynomials
暂无分享,去创建一个
[1] Richard Stong,et al. Some asymptotic results on finite vector spaces , 1988 .
[2] C. Chevalley,et al. Sur certains groupes simples , 1955 .
[3] Stable Hilbert series of S(g)K for classical groups , 2007 .
[4] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[5] Claudio Procesi,et al. The invariant theory of n × n matrices , 1976 .
[6] E. Formanek. The invariants of n×n matrices , 1987 .
[7] Stable Hilbert series of $\mathcal S(\mathfrak g)^K$ for classical groups , 2005, math/0510649.
[8] Stable branching rules for classical symmetric pairs , 2003, math/0311159.
[9] Finite Linear Groups, the Commodore 64, Euler and Sylvester , 1986 .
[10] Jeb F. Willenbring,et al. On Some $q$ -Analogs of a Theorem of Kostant-Rallis , 2000, Canadian Journal of Mathematics.
[11] Computing with matrix invariants , 2005, math/0506614.
[12] R. Goodman,et al. Symmetry, Representations, and Invariants , 2009 .
[13] W. Hesselink. Characters of the nullcone , 1980 .
[14] B. Kostant,et al. Lie Group Representations on Polynomial Rings , 1963 .
[15] R. Howe,et al. Bases for some reciprocity algebras I , 2007 .
[16] On the adjoint representation of and the Fibonacci numbers , 2011 .
[17] R. Howe,et al. Why should the Littlewood–Richardson Rule be true? , 2012 .