Investigation of the Valence Band Structure of Thermoelectric (Bi1−xSbx)2Te3 Single Crystals

Using combined optical-spectroscopic and transport investigations it is succeeded for the first time to determine all relevant valence band data for the whole series of mixed crystals (Bi1−xSbx)2Te3 (0 ≦ x ≦ 1). The reflectivity of polarized infrared light including its anisotropy is measured in the wave number range of 300 to 4000 cm−-1. In addition to the spectra the Hall coefficients ϱ123 and ϱ312, the electrical conductivity σ ⟂ c, and the Seebeck coefficient S ⟂ c are also given. In term of a six-valley band model and scattering by acoustical phonons all experimental data are consistently described. The main axis masses m, the ellipsoid tilt angle ϑ, the effective density-of-states mass md, and the susceptibility masses m,∥c are calculated in dependence on composition, also the Fermi level EF, the carrier density p, the mobility μ ⟂ c, the high frequency dielectric constant ϵ∞⟂,∥c, and the relaxation time τopt. For the first time the structure factors in the Hall coefficients are given. In the plot m(x) the distinct maxima of m and md near x = 0.8 are evident and important for the application of these substances. Unter Verwendung von kombinierten optisch-spektroskopischen und Transportuntersuchungen ist es erstmals gelungen, alle relevanten Valenzbanddaten fur die gesamte Mischkristallreihe (Bi1−xSbx)2Te3 (0 ≦ x ≦ 1) zu ermitteln. Die Reflektivitat von polarisiertem Infrarotlicht wird einschlieslich ihrer Anisotropie im Wellenzahlbereich von 300 bis 4000 cm−1 gemessen. Zusatzlich zu den Spektren werden die Hallkoeffizienten ϱ123 und ϱ512, die elektrische Leitfahigkeit σ ⟂ c und der Seebeck-Koeffizient S ⟂ c angegeben. Alle experimentellen Daten werden durch ein Sechs-Tal-Bandmodell und akustische Gitterstreuung konsistent beschrieben. Die Hauptachsenmassen m, der Ellipsoid-Neigungswinkel ϑ, die effektive Zustandsdichtemasse md und die Suszeptibilitatsmassen m,∥c werden in Abhangigkeit von der Zusammensetzung berechnet; ebenso das Ferminiveau EF, die Tragerdichte p, die Beweglichkeit μ⟂c, die Hochfrequenz-Dielektrizitatskonstante ϵ∞⟂,∥,c und die Relaxationszeit τopt. Erstmals werden die Strukturfaktoren der Hallkoeffizienten angegeben. Im Verlauf m(x) sind die Maxima von m und md nahe x = 0,8 auffallend und bedeutend fur die Anwendung dieser Substanzen.

[1]  M. Stordeur,et al.  IR Transmission Investigations of (Bi1−xSbx)2Te3 Single Crystals , 1986 .

[2]  H. Goldsmid,et al.  Anisotropy of the Seebeck Coefficient in Bismuth Telluride , 1986, March 1.

[3]  L. Koudelka,et al.  Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals , 1986 .

[4]  M. Stordeur,et al.  Investigation of the Weak‐Field Charge Transport in Semiconducting V2−VI3 Compounds with Trigonal Symmetry II. Interpretation of the Weak‐Field Charge Transport in Sb2Te3 Single Crystals , 1984 .

[5]  M. Stordeur Investigation of the Weak-Field Charge Transport in Semiconducting V2—VI3 Compounds with Trigonal Symmetry I. Expanded Model for the Transport Coefficients , 1984 .

[6]  M. Stordeur,et al.  IR Transmission Investigations of Sb2Te3 Single Crystals , 1984, May 1.

[7]  A. Priemuth,et al.  Doping properties of Pb and Ge in Bi2Te2 and Sb2Te3 , 1984 .

[8]  W. Heiliger,et al.  Seebeck coefficient and electrical conductivity in p‐(Bi1−xSbx)2 Te3 at room temperature , 1983 .

[9]  D. Ilzycer,et al.  Transport properties of thermoelectric materials for coolers , 1983 .

[10]  M. Stordeur,et al.  The nature of silver impurity atoms in antimony telluride , 1982 .

[11]  E. Anastassakis,et al.  Anisotropy and dispersion of coupled plasmon-LO-phonon modes in Sb2Te3 , 1982 .

[12]  M. Stordeur,et al.  Optical and Electrical Investigations of the Anisotropy of Sb2Te3 Single Crystals , 1982 .

[13]  G. Simon,et al.  Galvanomagnetische und thermoelektrische Transportuntersuchungen an Sb2Te3 , 1981, January 1.

[14]  G. Simon,et al.  Investigations on a two‐valence band model for Sb2Te3 , 1981 .

[15]  M. Stordeur,et al.  Valence Band Structure of (Bi1-xSbx)2Te3 Single Crystals , 1981 .

[16]  T. Krug,et al.  High Field Galvanomagnetic Transport Properties of Sb2Te3 and p‐Type Bi2Te3 , 1980 .

[17]  H. Köhler,et al.  Investigation of the highest valence band in (Bi1-xSbx)2Te3 crystals , 1977 .

[18]  M. Stordeur,et al.  Anisotropy of the thermopower of p‐Sb2Te3 , 1976 .

[19]  H. Köhler,et al.  Non-Parabolicity of the Highest Valence Band of Bi2Te3 from Shubnikov-de Haas Effect , 1976 .

[20]  M. Stordeur,et al.  Nichtparabolizität des valenzbandes von Bi2Te3 gefolgert aus transporteigenschaften , 1975 .

[21]  W. Zawadzki,et al.  Electron transport phenomena in small-gap semiconductors , 1974 .

[22]  G. Landwehr,et al.  Shubnikov-de Haas effect in p-type Sb2 Te3 , 1973 .

[23]  A. Vaško,et al.  Reflectivity of iodine‐doped Sb2Te3 crystals , 1972 .

[24]  R. Sehr,et al.  The optical properties of p-type Bi2Te3Sb2Te3 alloys between 2–15 microns , 1962 .

[25]  R. Wolfe,et al.  Anisotropic Galvanomagnetic Effects in Semiconductors , 1956 .