Enumerating colorings, tensions and flows in cell complexes

We study quasipolynomials enumerating proper colorings, nowhere-zero tensions, and nowhere-zero flows in an arbitrary CW-complex X, generalizing the chromatic, tension and flow polynomials of a graph. Our colorings, tensions and flows may be either modular (with values in Z / k Z for some k) or integral (with values in { - k + 1 , ? , k - 1 } ). We obtain deletion-contraction recurrences and closed formulas for the chromatic, tension and flow quasipolynomials, assuming certain unimodularity conditions. We use geometric methods, specifically Ehrhart theory and inside-out polytopes, to obtain reciprocity theorems for all of the aforementioned quasipolynomials, giving combinatorial interpretations of their values at negative integers as well as formulas for the numbers of acyclic and totally cyclic orientations of X.

[1]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[2]  Thomas Zaslavsky,et al.  Inside-out polytopes , 2003, math/0309330.

[3]  Aaron Matthew Dall,et al.  THE FLOW AND TENSION COMPLEXES , 2008 .

[4]  Phillipp Kaestner,et al.  Computing The Continuous Discretely Integer Point Enumeration In Polyhedra , 2016 .

[5]  Tyrrell B. McAllister,et al.  The minimum period of the Ehrhart quasi-polynomial of a rational polytope , 2005, J. Comb. Theory, Ser. A.

[6]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[7]  Felix Breuer,et al.  Bounds on the coefficients of tension and flow polynomials , 2010, 1004.3470.

[8]  Alex Fink,et al.  Matroids Over a Ring , 2012 .

[9]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[10]  Luca Moci,et al.  Graph colorings, flows and arithmetic Tutte polynomial , 2013, J. Comb. Theory, Ser. A.

[11]  Roland Bacher,et al.  The lattice of integral flows and the lattice of integral cuts on a finite graph , 1997 .

[12]  D. West Introduction to Graph Theory , 1995 .

[13]  Tamal K. Dey,et al.  Optimal Homologous Cycles, Total Unimodularity, and Linear Programming , 2011, SIAM J. Comput..

[14]  Einar Steingrímsson The Coloring Ideal and Coloring Complex of a Graph , 2001 .

[15]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[16]  I. G. MacDonald,et al.  Polynomials Associated with Finite Gell-Complexes , 1971 .

[17]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[18]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[19]  Felix Breuer,et al.  Ehrhart theory, modular flow reciprocity, and the Tutte polynomial , 2012 .

[20]  Victor Reiner,et al.  A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.

[21]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[22]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[23]  Luca Moci,et al.  Arithmetic matroids, the Tutte polynomial and toric arrangements , 2011 .

[24]  Richard P. Stanley,et al.  Orientations, Lattice Polytopes, and Group Arrangements II: Modular and Integral Flow Polynomials of Graphs , 2011, Graphs Comb..

[25]  Victor Reiner,et al.  An Interpretation for the Tutte Polynomial , 1999, Eur. J. Comb..

[26]  Felix Breuer,et al.  Viewing counting polynomials as Hilbert functions via Ehrhart theory , 2009, 0911.5109.

[27]  Felix Breuer,et al.  Ham sandwiches, staircases and counting polynomials , 2009 .

[28]  Beifang Chen,et al.  Orientations, Lattice Polytopes, and Group Arrangements I: Chromatic and Tension Polynomials of Graphs , 2007, 0706.3273.

[29]  Martin Kochol,et al.  Tension polynomials of graphs , 2002 .

[30]  Patricia Hersh,et al.  Coloring complexes and arrangements , 2007 .

[31]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[32]  Thomas Zaslavsky,et al.  The number of nowhere-zero flows on graphs and signed graphs , 2003, J. Comb. Theory, Ser. B.

[33]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[34]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[35]  R. Ho Algebraic Topology , 2022 .

[36]  Art M. Duval,et al.  Cuts and flows of cell complexes , 2012, Journal of Algebraic Combinatorics.

[37]  Martin Kochol,et al.  Polynomials Associated with Nowhere-Zero Flows , 2002, J. Comb. Theory, Ser. B.

[38]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[39]  Yvonne Kemper,et al.  Flows on Simplicial Complexes , 2012 .

[40]  William J. Cook,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .