Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression

Abstract The purpose of this paper is to present a proposal for the design of steel structures sensitive to buckling due to compression in order to fill in the gaps in the current Standard EN 1993-1-1 guidelines for obtaining the magnitude of the geometric equivalent imperfection. The proposal generalizes the approach provided in Clause 5.3.2(11) of EN 1993-1-1 (EC-3) for cases in which a torsional or flexural–torsional buckling mode may occur. The extension of the procedure also allows designers to obtain the magnitude and shape of the imperfection as well as the worst direction of the imperfection due to the external loads applied. It also identifies the cases in which it is necessary to consider the shape of the imperfection given by higher buckling modes.

[1]  Luís Simões da Silva,et al.  Development of a consistent buckling design procedure for tapered columns , 2012 .

[2]  Richard Greiner,et al.  Development of consistent buckling curves for torsional and lateral‐torsional buckling , 2008 .

[3]  Nicholas S. Trahair,et al.  Advanced analysis of steel building frames , 1992 .

[4]  Nicholas S. Trahair,et al.  Torsion, bending and buckling of steel beams , 1997 .

[5]  Harald Unterweger,et al.  Behaviour and design of members with monosymmetric cross-section , 2013 .

[6]  Richard Greiner,et al.  New design curves for LT and TF buckling with consistent derivation and code‐conform formulation , 2010 .

[7]  Willis R. Whitney,et al.  Engineering Research , 1943, Nature.

[8]  Richard Greiner,et al.  Interaction formulae for members subjected to bending and axial compression in EUROCODE 3—the Method 2 approach , 2006 .

[9]  Jean-Pierre Jaspart,et al.  Improvement of the interaction formulae for beam columns in Eurocode 3 , 2002 .

[10]  Richard Greiner,et al.  Torsional and flexural torsional buckling — A study on laterally restrained I-sections , 2006 .

[11]  Eugen Chladný,et al.  Frames with unique global and local imperfection in the shape of the elastic buckling mode (Part 1) , 2013 .

[12]  Francisco J. Pallarés,et al.  Proposal to evaluate the ultimate limit state of slender structures. Part 1: Technical aspects , 2007 .

[13]  Nicholas S. Trahair,et al.  Bending and buckling of tapered steel beam structures , 2014 .

[14]  Eugen Chladný,et al.  Frames with unique global and local imperfection in the shape of the elastic buckling mode (Part 2) , 2013 .

[15]  Johannes Naumes,et al.  Biegeknicken und Biegedrillknicken von Stäben und Stabsystemen auf einheitlicher Grundlage , 2010 .

[16]  M. Štujberová,et al.  Berichtigung: Frames with unique global and local imperfection in the shape of the elastic buckling mode. Part 1. Stahlbau 82 (2013), H. 8, S. 609–617, Part 2. Stahlbau 83 (2013), H. 9, S. 684–694. , 2014 .

[17]  Federico M. Mazzolani,et al.  En1999 Eurocode 9 : Design of aluminium structures , 2001 .

[18]  J. Michael Rotter,et al.  Shell buckling design and assessment and the LBA‐MNA methodology , 2011 .

[19]  Nicholas S. Trahair,et al.  Flexural-Torsional Buckling of Structures , 1993 .

[20]  Nicholas S. Trahair,et al.  Strength design of cruciform steel columns , 2012 .

[21]  Chanakya Arya,et al.  Eurocode 3: Design of steel structures , 2018, Design of Structural Elements.

[22]  Matthias Wieschollek,et al.  Lateral‐torsional buckling checks of steel frames using second‐order analysis , 2012 .

[23]  Dinar Camotim,et al.  On the incorporation of equivalent member imperfections in the in-plane design of steel frames , 2005 .

[24]  D. A. Nethercot,et al.  Designer's guide to EN 1993-1-1 : Eurocode 3: Design of Steel Structures : General Rules and Rules for Buildings /L. Gardner and D. A. Nethercot , 2005 .

[25]  Frans S.K. Bijlaard,et al.  The “general method” for assessing the out‐of‐plane stability of structural members and frames and the comparison with alternative rules in EN 1993 — Eurocode 3 — Part 1‐1 , 2010 .