Fluid–particle dynamics in canalithiasis

The semicircular canals (SCCs; located in the inner ear) are the primary sensors for angular motion. Angular head movements induce a fluid flow in the SCCs. This flow is detected by afferent hair cells inside the SCCs. Canalithiasis is a condition where small particles disturb this flow, which leads to benign paroxysmal positional vertigo (top-shelf vertigo). The present work investigates the interaction between the fluid flow and the particles on the basis of an idealized analytical model. Numerical solutions of the full model and a thorough analytical study of the linearized model reveal the principal mechanisms of canalithiasis. We propose a set of dimensionless numbers to characterize canalithiasis and derive explicit expressions connecting these dimensionless numbers directly to the typical clinical symptoms.

[1]  F. J. Cañizares,et al.  Otoconial degeneration in the aged utricle and saccule. , 1990, Advances in oto-rhino-laryngology.

[2]  William C. Van Buskirk,et al.  The effect of the utricle on fluid flow in the semicircular canals , 1977, Annals of Biomedical Engineering.

[3]  T. Colonius,et al.  Computational aeroacoustics: progress on nonlinear problems of sound generation , 2004 .

[4]  B Cohen,et al.  Model-based study of the human cupular time constant. , 1999, Journal of vestibular research : equilibrium & orientation.

[5]  V. Honrubia,et al.  Theoretical Models for the Mechanisms of Benign Paroxysmal Positional Vertigo , 2003, Audiology and Neurotology.

[6]  D. A. Robinson,et al.  Linear addition of optokinetic and vestibular signals in the vestibular nucleus , 1977, Experimental Brain Research.

[7]  C. S. Hallpike,et al.  The Pathology, Symptomatology and Diagnosis of Certain Common Disorders of the Vestibular System , 1952, Proceedings of the Royal Society of Medicine.

[8]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[9]  B. Cohen,et al.  Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after‐nystagmus , 1977, The Journal of physiology.

[10]  Richard D. Rabbitt,et al.  The Role of 3-Canal Biomechanics in Angular Motion Transduction by the Human Vestibular Labyrinth , 2007, Annals of Biomedical Engineering.

[11]  Howard Brenner,et al.  Pressure drop due to the motion of a sphere near the wall bounding a Poiseuille flow , 1973 .

[12]  E. Berthold Ueber die Function der Bogengänge des Ohrlabyrinths , 1874, Archiv für Ohrenheilkunde.

[13]  Howard A Stone,et al.  A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. , 2003, Journal of biomechanics.

[14]  Suhrud M. Rajguru,et al.  Biomechanics of horizontal canal benign paroxysmal positional vertigo. , 2005, Journal of vestibular research : equilibrium & orientation.

[15]  V Honrubia,et al.  Quantitative vestibular function testing in elderly patients with dizziness. , 1989, Ear, nose, & throat journal.

[16]  Y. K. Liu,et al.  The fluid mechanics of the semicircular canals , 1976, Journal of Fluid Mechanics.

[17]  Richard D. Rabbitt,et al.  Three-Dimensional Biomechanical Model of Benign Paroxysmal Positional Vertigo , 2004, Annals of Biomedical Engineering.

[18]  T. Vilis,et al.  Computing three-dimensional eye position quaternions and eye velocity from search coil signals , 1990, Vision Research.

[19]  R. Rabbitt,et al.  Afferent responses during experimentally induced semicircular canalithiasis. , 2007, Journal of neurophysiology.

[20]  Ernst Mach,et al.  Grundlinien der Lehre von den Bewegungsempfindungen , 1967 .

[21]  M. Todd,et al.  Benign positional nystagmus , 2005, Neurology.

[22]  K. Hepp On Listing's law , 1990 .

[23]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[24]  E. R. Damiano,et al.  A hydroelastic model of macromechanics in the endolymphatic vestibular canal , 1992, Journal of Fluid Mechanics.

[25]  W. V. Buskirk The biomechanics of the semicircular canals , 1988 .

[26]  S. M. Highstein,et al.  Relationship between Inner-Ear Fluid Pressure and Semicircular Canal Afferent Nerve Discharge , 2002, Journal of the Association for Research in Otolaryngology.

[27]  B. Cohen,et al.  Velocity storage in the vestibulo-ocular reflex arc (VOR) , 1979, Experimental Brain Research.

[28]  A C Brown The Sense of Rotation and the Anatomy and Physiology of the Semicircular Canals of the Internal Ear. , Journal of anatomy and physiology.

[29]  Dominik Obrist,et al.  Fluidmechanics of semicircular canals – revisited , 2008 .

[30]  Richard D. Rabbitt,et al.  A singular perturbation model of fluid dynamics in the vestibular semicircular canal and ampulla , 1996, Journal of Fluid Mechanics.

[31]  Brown Ac,et al.  The Sense of Rotation and the Anatomy and Physiology of the Semicircular Canals of the Internal Ear. , 1874 .

[32]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .