Size dependent interface energy and its applications

Abstract Reducing the sizes of low dimensional materials leads to dramatic increase in the portion of surface/interface atoms. The properties of a solid are essentially controlled by related surface/interface energies. Although such changes are believed to dominate behaviors of nanoscale structures, little experience or intuition for the expected phenomena, especially for the size-dependence of the energies and their practical implications, are modeled analytically. In this contribution, the classic thermodynamics as a powerful traditional theoretical tool is used to model different bulk interface energies and the corresponding size dependences. During the modeling, an emphasis on size dependences of the interface energies is given, which is induced by size dependence of coherent energy of atoms within nanocrystals. It is found that solid–vapor interface energy, liquid–vapor interface energy, solid–liquid interface energy, and solid–solid interface energy of nanoparticles and thin films fall as their diameters or thickness decrease to several nanometers while the solid–vapor interface energy ratio between different facets is size-independent and equals to the corresponding bulk value. The predictions of the established analytic models without any free parameters, such as size and temperature, dependences of these four kinds of interface energies and related surface stress, correspond to experimental or other theoretical results. The above established models are suitable for low-dimensional materials with different dimensions and different chemical bond natures. Moreover, several related applications in the fields of nanophase transitions, nanocrystal growth, and self-diffusion of liquids are provided.

[1]  Chang Q. Sun Size dependence of nanostructures: Impact of bond order deficiency , 2007 .

[2]  Zengyuan Guo,et al.  Surface tension of undercooled liquid cobalt , 2002 .

[3]  A. Shirinyan,et al.  Solubility diagram of the Cu–Ni nanosystem , 2006 .

[4]  S. Sauerland,et al.  Measurements of thermophysical properties of liquid metals by noncontact techniques , 1993 .

[5]  P. Madden,et al.  Structure and dynamics of liquid lithium: comparison of ab initio molecular dynamics predictions with scattering experiments , 1999 .

[6]  Q. Jiang,et al.  Comment on "Higher surface energy of free nanoparticles". , 2004, Physical review letters.

[7]  H. M. Lu,et al.  Temperature dependence of self-diffusion coefficient in several liquid metals , 2006 .

[8]  J. Nørskov,et al.  A negative surface energy for alumina , 2004, Nature materials.

[9]  Dierk Raabe,et al.  Computational Materials Science: The Simulation of Materials Microstructures and Properties , 1998 .

[10]  Q. Jiang,et al.  Size-dependent cohesive energy of nanocrystals , 2002 .

[11]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[12]  K. Komvopoulos,et al.  Effect of stress-induced phase transformation on nanomechanical properties of sputtered amorphous carbon films , 2003 .

[13]  K. Heinz,et al.  Pseudomorphic growth of Ni films on Cu(001): a quantitative LEED analysis , 1996 .

[14]  G. Kahl,et al.  A molecular-dynamics study of the dynamic properties of liquid rubidium. I. Collective correlation functions , 1994 .

[15]  Q. Jiang,et al.  Size and temperature dependence of nanodiamond–nanographite transition related with surface stress , 2002 .

[16]  Shen,et al.  bcc Symmetry in the Crystal-Melt Interface of Lennard-Jones Fluids Examined through Density Functional Theory. , 1996, Physical review letters.

[17]  F. P. Buff The Spherical Interface. I. Thermodynamics , 1951 .

[18]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[19]  Q. Jiang,et al.  The solid–liquid interface energy of organic crystals , 2007 .

[20]  H. Skriver,et al.  Full charge-density scheme with a kinetic-energy correction: Application to ground-state properties of the 4d metals , 1997 .

[21]  Asa H. Barber,et al.  Direct measurement of multiwall nanotube surface tension , 2005 .

[22]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[23]  P. Ramachandrarao,et al.  On the free energy change accompanying crystallisation of undercooled melts , 1984 .

[24]  M. J. Ruiz-Montero,et al.  Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. , 1995, Physical review letters.

[25]  Z. P. Chen,et al.  Phase stabilities of fcc Ti nanocrystals , 2004 .

[26]  Q. Jiang,et al.  Surface tension and self-diffusion coefficient of liquid Si and Ge , 2006 .

[27]  G. Bhuiyan,et al.  APPLICATION OF THE EAM POTENTIALS TO THE STUDY OF DIFFUSION COEFFICIENTS OF LIQUID NOBLE AND TRANSITION METALS , 2002 .

[28]  Cammarata,et al.  Surface-stress effects on elastic properties. I. Thin metal films. , 1994, Physical review. B, Condensed matter.

[29]  V. B. Fenelonov,et al.  On the Dependence of Surface Tension of Liquids on the Curvature of the Liquid−Vapor Interface , 2001 .

[30]  A. Ludwig,et al.  Solid-liquid interfacial free energy , 1991 .

[31]  A. Laaksonen,et al.  Interfacial curvature free energy, the Kelvin relation, and vapor–liquid nucleation rate , 1997 .

[32]  M. Baskes Many-Body Effects in fcc Metals: A Lennard-Jones Embedded-Atom Potential , 1999 .

[33]  S. Russo,et al.  Size dependent phase stability of carbon nanoparticles: nanodiamond versus fullerenes , 2003 .

[34]  Theory of Melting , 1965 .

[35]  Huibin Xu,et al.  On the pseudo-elastic hysteresis , 1991 .

[36]  S. Yoda,et al.  Noncontact surface tension and viscosity measurements of rhenium in the liquid and undercooled states , 2004 .

[37]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[38]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[39]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[40]  Walter Kohn,et al.  Theory of Metal Surfaces: Charge Density and Surface Energy , 1970 .

[41]  R. Meyer,et al.  The surface tension in a structural model for the solid-liquid interface , 1976 .

[42]  E. C. Richard,et al.  The collected works , 1954 .

[43]  M. Erol,et al.  Measurement of solid–liquid interfacial energy for solid d-camphor solution in equilibrium with succinonitrile d-camphor eutectic liquid , 2006 .

[44]  M. Erol,et al.  Solid–liquid interfacial energy of bismuth in the Bi–Cd eutectic system , 2004 .

[45]  A. Alivisatos,et al.  Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals , 2002 .

[46]  Chan,et al.  Au(111): A theoretical study of the surface reconstruction and the surface electronic structure. , 1991, Physical review. B, Condensed matter.

[47]  R. Tolman Relativity, Thermodynamics, and Cosmology , 1934 .

[48]  A. S. Skapski,et al.  Method for the Determination of the Surface Tension of Solids, from Their Melting Points in Thin Wedges , 1956 .

[49]  Kambayashi,et al.  Dynamic properties of liquid cesium near the melting point: A molecular-dynamics study. , 1992, Physical Review A. Atomic, Molecular, and Optical Physics.

[50]  A. Nakano,et al.  Grain Boundaries in Gallium Arsenide Nanocrystals Under Pressure , 2001 .

[51]  W. Yao,et al.  Surface tension of superheated and undercooled liquid Co–Si alloy , 2004 .

[52]  J. Hunt,et al.  Solid-liquid surface energies in the AlCuAl2, AlNiAl3 and AlTi systems , 1996 .

[53]  A. Savvatimskiy,et al.  Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003) , 2005 .

[54]  A. Muñoz,et al.  Theoretical study of ZnS under high pressure , 2003 .

[55]  J. Bonevich,et al.  Synthesis and Characterization of Colloidal -HgS Quantum Dots , 2002 .

[56]  N. Xu,et al.  Graphitization of nanodiamond powder annealed in argon ambient , 1999 .

[57]  K. Varma,et al.  Phase diagram and dielectric studies of binary organic materials , 2000 .

[58]  B. Vinet,et al.  Correlations between surface and interface energies with respect to crystal nucleation. , 2002, Journal of colloid and interface science.

[59]  E. Çadırlı,et al.  Solid–liquid interfacial energy of camphene , 1999 .

[60]  Martin E. Glicksman,et al.  Dendritic grown kinetics and structure I. Pivalic acid , 1991 .

[61]  V. Talanquer,et al.  Density Functional Analysis of Phenomenological Theories of Gas-Liquid Nucleation , 1995 .

[62]  K. Koga,et al.  Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence , 1999 .

[63]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[64]  Shinichi Yoda,et al.  Physical properties of liquid and undercooled tungsten by levitation techniques , 2005 .

[65]  Q. Jiang,et al.  Nucleation temperature of elements , 2002 .

[66]  U. S. Rai,et al.  Chemistry and characterization of binary organic eutectics and molecular complexes. The urea-m-nitrobenzoic acid system , 1998 .

[67]  F. Spaepen,et al.  Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films , 2000 .

[68]  Chelikowsky,et al.  First-principles simulation of liquid silicon using Langevin dynamics with quantum interatomic forces. , 1994, Physical review. B, Condensed matter.

[69]  R. Cammarata Continuum model for surface reconstructions in (111) and (100) oriented surfaces of fcc metals , 1992 .

[70]  K. Lu Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties , 1996 .

[71]  Hang Shi,et al.  FREE ENERGY OF CRYSTAL-LIQUID INTERFACE , 1999 .

[72]  Frans Spaepen,et al.  Interfaces and stresses in thin films , 2000 .

[73]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[74]  M. Alemany,et al.  A molecular dynamics study of the transport coefficients of liquid transition and noble metals using effective pair potentials obtained from the embedded atom model , 2000 .

[75]  G. Grest,et al.  Liquid/vapor surface tension of metals: embedded atom method with charge gradient corrections. , 2001, Physical review letters.

[76]  J. Cahn,et al.  Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids , 1997 .

[77]  László Gránásy,et al.  Crystal-Melt Interfacial Free Energy of Elements and Alloys , 1991 .

[78]  Q. Jiang,et al.  Size-dependent continuous binary solution phase diagram , 2003 .

[79]  Ismail,et al.  Surfaces: a playground for physics with broken symmetry in reduced dimensionality , 2002 .

[80]  Nakano,et al.  Grain Boundaries in Gallium Arsenide Nanocrystals Under Pressure: A Parallel Molecular-Dynamics Study. , 2001, Physical review letters.

[81]  Glenn A. Woodell,et al.  Experimental verification of agreement between thermal and real time visual melt-solid interface positions in vertical Bridgman grown germanium , 1996 .

[82]  Reconstruction possibility of fcc (111) metallic surfaces at room temperature , 2005 .

[83]  Jijun Zhao,et al.  Relative stability of hydrogenated nanodiamond and nanographite from density function theory , 2007 .

[84]  J. Kollár,et al.  The surface energy of metals , 1998 .

[85]  R. C. Weast Handbook of chemistry and physics , 1973 .

[86]  J. H. Van Der Merwe,et al.  Crystal Interfaces. Part II. Finite Overgrowths , 1963 .

[87]  R. Digilov Semi-empirical model for prediction of crystal–melt interfacial tension , 2004 .

[88]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[89]  R. H. Ewing The free energy of the crystal-melt interface from the radial distribution function , 1971 .

[90]  Skriver,et al.  Surface energy and work function of the light actinides. , 1994, Physical review. B, Condensed matter.

[91]  Scheffler,et al.  Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. , 1992, Physical review. B, Condensed matter.

[92]  E Ricci,et al.  Temperature coefficient of surface tension for pure liquid metals , 1998 .

[93]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[94]  N. Hwang,et al.  Charged cluster model in the low pressure synthesis of diamond , 1996 .

[95]  U. S. Rai,et al.  Solidification behaviour of binary organic eutectic alloys , 1994 .

[96]  Q. Jiang,et al.  Size-Dependent Surface Energies of Nanocrystals , 2004 .

[97]  M. Gündüz,et al.  The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems , 1985 .

[98]  Doh-Yeon Kim,et al.  Models of melting and liquid structure based on rotationally free atomic clusters , 2003 .

[99]  Q. Jiang,et al.  Nucleus–liquid interfacial energy of elements , 2006 .

[100]  Adam S Skapski,et al.  Capillary Cone Method for Determination of Surface Tension of Solids , 1957 .

[101]  G. Grest,et al.  Liquid/Vapor Surface Tension of Metals , 2001 .

[102]  U. S. Rai,et al.  Solid–liquid equilibrium and thermochemical properties of organic eutectic in a monotectic system , 2000 .

[103]  U. S. Rai,et al.  Solidification and thermal behaviour of binary organic eutectic and monotectic; succinonitrile pyrene system , 2003 .

[104]  Y. Oshima,et al.  Face centered cubic indium nano-particles studied by UHV-transmission electron microscopy , 2001 .

[105]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[106]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[107]  G. Kaptay A unified equation for the viscosity of pure liquid metals , 2005 .

[108]  Q. Jiang,et al.  Comparison of different models for melting point change of metallic nanocrystals , 2001 .

[109]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[110]  J. Ferrante,et al.  Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory , 1993 .

[111]  Z. Y. Chen,et al.  Overall energy model for preferred growth of TiN films during filtered arc deposition , 1997 .

[112]  M. Fujii,et al.  Structure and electronic properties of carbon onions , 2001 .

[113]  Bonding and Stability of Hybrid Diamond/Nanotube Structures , 2003 .

[114]  A. Shchekin,et al.  Validity of Tolman's equation: How large should a droplet be? , 1998 .

[115]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[116]  Q. Jiang,et al.  Modelling of surface energies of elemental crystals , 2004 .

[117]  John D. Budai,et al.  Advances in wide bandgap materials for semiconductor spintronics , 2003 .

[118]  A. Kiejna,et al.  Bulk and surface properties of hexagonal-close-packed Be and Mg , 2001 .

[119]  Y. Saito,et al.  Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method , 1994 .

[120]  H. Grönbeck,et al.  Surface properties of alkaline earth metal oxides , 2004 .

[121]  U. S. Rai,et al.  Some Physicochemical Studies on Organic Analog of Metal‐Nonmetal Eutectics , 1997 .

[122]  Q. Jiang,et al.  Size range of solid-liquid interface energy of organic crystals , 2002 .

[123]  J. Goldman Surface tension of sodium , 1984 .

[124]  L. Bartell Tolman's δ, Surface Curvature, Compressibility Effects, and the Free Energy of Drops† , 2001 .

[125]  R. Rai Phase diagram, optical, nonlinear optical, and physicochemical studies of the organic monotectic system: Pentachloropyridine–succinonitrile , 2004 .

[126]  W. Kohn,et al.  An energy functional for surfaces , 2001 .

[127]  J. F. Nicholas,et al.  Bonds broken at atomically flat crystal surfaces—II: Crystals containing many atoms in a primitive unit cell , 1962 .

[128]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[129]  U. S. Rai,et al.  SOME PHYSICOCHEMICAL STUDIES ON BINARY ORGANIC EUTECTICS , 1991 .

[130]  Shaochun Tang,et al.  Surface Energy and Melting Temperature of Elemental Nanocavities , 2007 .

[131]  M. Gamarnik Size-related stabilization of diamond nanoparticles , 1996 .

[132]  Morris Cohen,et al.  Grain-boundary energies in gold-copper alloys , 1960 .

[133]  Mikhail Dzugutov,et al.  A universal scaling law for atomic diffusion in condensed matter , 1996, Nature.

[134]  A Monte Carlo simulation on surface tension of liquid nickel , 2000 .

[135]  M. Sambi,et al.  Structure of highly strained ultrathin Ni films on Pd(100) , 2003 .

[136]  Eduardo Filipe,et al.  On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. , 2005, The journal of physical chemistry. B.

[137]  U. S. Rai,et al.  Physical Chemistry of Organic Eutectics , 1998 .

[138]  A. R. Novoselov,et al.  Investigation of the microdrop surface tension and the linear tension of the wetting perimeter on the basis of similarity concepts and the thermodynamic perturbation theory , 1999 .

[139]  Mark Asta,et al.  Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe , 2004 .

[140]  Alivisatos,et al.  Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals , 2000, Physical review letters.

[141]  Vladimir L. Kuznetsov,et al.  Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface , 1999 .

[142]  A. Boushehri,et al.  An Analytical Equation of State for Some Saturated Liquid Metals , 2004 .

[143]  Mehl,et al.  Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. , 1996, Physical review. B, Condensed matter.

[144]  Q. Jiang,et al.  Surface tension and its temperature coefficient for liquid metals. , 2005, The journal of physical chemistry. B.

[145]  Qing Jiang,et al.  Thermodynamic phase stabilities of nanocarbon , 2006 .

[146]  D. Casavant,et al.  Interfacial Tension Solid-Liquid of Benzene , 1959 .

[147]  N. Hwang,et al.  Chemical potential of carbon in the low pressure synthesis of diamond , 1996 .

[148]  A. Karma,et al.  Atomistic and continuum modeling of dendritic solidification , 2003 .

[149]  George H. Gilmer,et al.  Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems , 1986 .

[150]  M. Sambi,et al.  Photoelectron diffraction study of ultrathin film growth of Ni on Pt(111) , 1995 .

[151]  Calculation of the transport properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics , 2001 .

[152]  Kh. B. Khokonov,et al.  Surface tension of pure aluminum melt , 2003 .

[153]  Huajian Gao,et al.  An atomistic interpretation of interface stress , 1998 .

[154]  V. Grassian,et al.  Oxide surfaces as environmental interfaces , 2003 .

[155]  M. Wautelet,et al.  On the phase diagram of non-spherical nanoparticles , 2003 .

[156]  R. L. Davidchack,et al.  Simulation of the hard-sphere crystal–melt interface , 1998 .

[157]  A. Saúl,et al.  Relation between surface stress and (1×2) reconstruction for (1 1 0) fcc transition metal surfaces , 2003 .

[158]  Ann E. Mattsson,et al.  Computing accurate surface energies and the importance of electron self-energy in metal/metal-oxide adhesion , 2002 .

[159]  Q. Jiang,et al.  Melting volume change of different crystalline lattices , 2004 .

[160]  D. Turnbull,et al.  Microscopic Observation of the Solidification of Small Metal Droplets , 1950 .

[161]  Chang Q. Sun,et al.  Length, Strength, Extensibility, and Thermal Stability of a Au−Au Bond in the Gold Monatomic Chain , 2004 .

[162]  C. Ammer,et al.  Metastable misfit-induced relaxation structures of close-packed heteroepitaxial films , 1998 .

[163]  G. C. Benson,et al.  Surface Tension of the {100} Face of Alkali Halide Crystals , 1965 .

[164]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[165]  Chang Q. Sun,et al.  Upper limit of blue shift in the photoluminescence of CdSe and CdS nanosolids , 2002 .

[166]  D. Wallace Statistical mechanics of monatomic liquids , 1997 .

[167]  E. Rabani Structure and electrostatic properties of passivated CdSe nanocrystals , 2001 .

[168]  A. S. Skapski The Temperature Coefficient of the Surface Tension of Liquid Metals , 1948 .

[169]  E. Carter,et al.  Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles , 2003 .

[170]  J. Cahn,et al.  A simple model for coherent equilibrium , 1984 .

[171]  N. Eustathopoulos Energetics of solid/liquid interfaces of metals and alloys , 1983 .

[172]  Johansson,et al.  Calculated surface-energy anomaly in the 3d metals. , 1992, Physical review letters.

[173]  H. Singh,et al.  Stability limit of supercooled liquids , 1983 .

[174]  J. Heyraud,et al.  Surface free energy anisotropy measurement of indium , 1986 .

[175]  Young Whan Cho,et al.  Thermal stability of unsupported gold nanoparticle: a molecular dynamics study , 2002 .

[176]  Price,et al.  Linear-muffin-tin-orbital calculation of TaC(001) surface relaxation. , 1993, Physical review. B, Condensed matter.

[177]  Feibelman First-principles calculation of the geometric and electronic structure of the Be(0001) surface. , 1992, Physical review. B, Condensed matter.

[178]  A. Polian,et al.  Trapping of cubic ZnO nanocrystallites at ambient conditions , 2002 .

[179]  I. Yokoyama Self-diffusion coefficient and its relation to properties of liquid metals: a hard-sphere description , 1999 .

[180]  V. Samsonov,et al.  Rusanov's Linear Formula for the Surface Tension of Small Objects , 2003 .

[181]  Morris Cohen,et al.  On the thermodynamics of thermoelastic martensitic transformations , 1979 .

[182]  U. Harms,et al.  Correlation between the volume change during crystallization and the thermal stability of supercooled liquids , 2003 .

[183]  J. Perepezko,et al.  Thermodynamic properties of undercooled liquid metals , 1984 .

[184]  A. F. Bakker,et al.  Molecular dynamics of the surface tension of a drop , 1992 .

[185]  N. Maraşlı,et al.  Solid–liquid interface energies in the succinonitrile and succinonitrile–carbon tetrabromide eutectic system , 2003 .

[186]  Godfrey,et al.  Surface stress of aluminum and jellium. , 1990, Physical review. B, Condensed matter.

[187]  P. Ajayan,et al.  Carbon onions as nanoscopic pressure cells for diamond formation , 1996, Nature.

[188]  J. Charlier,et al.  Diamond formation by thermal activation of graphite , 1999, Nature.

[189]  U. S. Rai,et al.  Some Physicochemical Studies on Organic Eutectics and Molecular Complex: Urea – p-nitrophenol System , 1999 .

[190]  S. Sauerland,et al.  Surface tension and viscosity of liquid metals , 1993 .

[191]  Yu,et al.  Empirical molecular-dynamics study of diffusion in liquid semiconductors. , 1996, Physical review. B, Condensed matter.

[192]  A. F. Guillermet,et al.  Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. , 1991, Physical review. B, Condensed matter.

[193]  W. Haiss,et al.  Surface stress of clean and adsorbate-covered solids , 2001 .

[194]  G. Seifert,et al.  Concentric-shell fullerenes and diamond particles: A molecular-dynamics study , 1999 .

[195]  Young H. Park,et al.  Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles , 2007 .

[196]  Q. Jiang,et al.  Phase Stability of Nanoanatase , 2003 .

[197]  J. A. Barker,et al.  A new Monte Carlo method for calculating surface tension , 1976 .

[198]  H. C. Andersen,et al.  Theory of transport in liquid metals. I. Calculation of self‐diffusion coefficients , 1973 .

[199]  T. P. Weihs,et al.  Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries , 2003 .

[200]  R. L. Davidchack,et al.  Crystal structure and interaction dependence of the crystal-melt interfacial free energy. , 2005, Physical review letters.

[201]  T. Mattsson,et al.  Calculating the vacancy formation energy in metals: Pt, Pd, and Mo , 2002 .

[202]  V. Milman,et al.  Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals , 2000 .

[203]  Skriver,et al.  Full charge-density calculation of the surface energy of metals. , 1994, Physical review. B, Condensed matter.

[204]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[205]  Wei Liu,et al.  Surface energies of several ceramics with NaCl structure , 2006 .

[206]  Martin E. Glicksman,et al.  Determination of absolute solid-liquid interfacial free energies in metals , 1969 .

[207]  J. S. Murday,et al.  Self‐Diffusion Coefficient of Liquid Lithium , 1968 .

[208]  Alain Pasturel,et al.  Local order of liquid and supercooled zirconium by ab initio molecular dynamics. , 2003, Physical review letters.

[209]  K. Sieradzki,et al.  Surface and Interface Stresses , 1994 .

[210]  Q. Jiang,et al.  Lattice Contraction and Surface Stress of fcc Nanocrystals , 2001 .

[211]  E. Rabani An interatomic pair potential for cadmium selenide , 2002 .

[212]  J. Li,et al.  Thermodynamic Consideration on Solid Transition of CdSe Nanocrystals Induced by Pressure , 2003 .

[213]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[214]  Q. Jiang,et al.  Size-dependent interface energy and related interface stress , 2001 .

[215]  D. Kuhlmann-wilsdorf,et al.  A THEORY OF THE INTERFACIAL ENERGY BETWEEN A CRYSTAL AND THE MELT , 1966 .

[216]  K. Benz,et al.  A formula describing the temperature dependence of surface tension for some semiconductors melts , 1994 .

[217]  U. S. Rai,et al.  Physical chemistry of binary organic eutectic and monotectic alloys; 1,2,4,5-tetrachlorobenzene–α-naphthol and TCB–resorcinol systems , 2002 .

[218]  J. H. Merwe Interfacial energy: bicrystals of semi-infinite crystals , 2001 .

[219]  Drew Myers,et al.  Surfaces, Interfaces, and Colloids: Principles and Applications , 1991 .

[220]  I. Yokoyama Temperature dependence of sound velocity and self-diffusion coefficient in liquid alkali metals: a hard-sphere description , 2001 .

[221]  H. Dreyssé,et al.  Theoretical approaches of magnetism of transition-metal thin films and nanostructures on semi-infinite substrate , 1997 .

[222]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[223]  O. Eriksson,et al.  Surface energies and work functions of the transition metal carbides , 2004 .

[224]  Xin Jiang,et al.  ELASTIC CONSTANTS AND HARDNESS OF ION-BEAM-SPUTTERED TINX FILMS MEASURED BY BRILLOUIN SCATTERING AND DEPTH-SENSING INDENTATION , 1991 .

[225]  G. Ouyang,et al.  Thermodynamic model of the surface energy of nanocrystals , 2006 .

[226]  L. R. Francis Rose,et al.  The martensitic transformation in ceramics — its role in transformation toughening , 2002 .

[227]  F. Jona,et al.  Incommensurate epitaxial growth of Cu on Pd{111} , 1991 .

[228]  E. M. Blokhuis,et al.  Mean field curvature corrections to the surface tension , 1998 .

[229]  C. Bruin,et al.  Molecular dynamics study of the curvature correction to the surface tension , 1994 .

[230]  Phillips,et al.  First-principles interatomic potentials for transition-metal surfaces. , 1991, Physical review letters.

[231]  N. Anderson,et al.  Surface phenomena in metals and alloys , 1962 .

[232]  B. J. Keene,et al.  Review of data for the surface tension of pure metals , 1993 .

[233]  A. L. Ivanovskii,et al.  Atomic and electronic structures and stability of icosahedral nanodiamonds and onions , 2007 .

[234]  Chr. Herzig,et al.  Grain boundary self-diffusion in Cu polycrystals of different purity , 1997 .

[235]  Michiyoshi Tanaka,et al.  Size effect on the crystal phase of cobalt fine particles , 1997 .

[236]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[237]  Alexey Bezryadin,et al.  Electrostatic trapping of single conducting nanoparticles between nanoelectrodes , 1997 .

[238]  John Aurie Dean,et al.  Handbook of Organic Chemistry , 1987 .

[239]  B. Feuerbacher,et al.  Direct determination of metastable phase diagram by synchrotron radiation experiments on undercooled metallic melts. , 2001, Physical review letters.

[240]  Cammarata,et al.  Surface-stress effects on elastic properties. II. Metallic multilayers. , 1994, Physical review. B, Condensed matter.

[241]  Mansfield,et al.  Surface energy and stress of lead (111) and (110) surfaces. , 1991, Physical review. B, Condensed matter.

[242]  F. Banhart,et al.  RADIATION-INDUCED TRANSFORMATION OF GRAPHITE TO DIAMOND , 1997 .

[243]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[244]  I. Egry On the relation between surface tension and viscosity for liquid metals , 1993 .

[245]  Jing Sun,et al.  Ultrafine diamond synthesized by long-pulse-width laser , 2006 .

[246]  V. Samsonov,et al.  On applicability of Gibbs thermodynamics to nanoparticles , 2003 .

[247]  Y. Iijima,et al.  Role of entropy of fusion in phase transformation and self-diffusion , 2004 .

[248]  Sean Li,et al.  Size-Dependent Temperature−Pressure Phase Diagram of Carbon , 2008 .

[249]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[250]  D. R. H. Jones,et al.  The free energies of solid-liquid interfaces , 1974 .

[251]  R. Tolman The Superficial Density of Matter at a Liquid‐Vapor Boundary , 1949 .

[252]  I. Abrikosov,et al.  Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys. , 1993, Physical review. B, Condensed matter.

[253]  Qing Jiang,et al.  Size-dependent surface tension and Tolman's length of droplets. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[254]  Chang Q. Sun,et al.  Effects of surface passivation and interfacial reaction on the size-dependent 2p-level shift of supported copper nanosolids , 2003 .

[255]  W. Liu,et al.  First-principles study of the surface energy and work function of III-V semiconductor compounds , 2007 .

[256]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[257]  Andersen,et al.  Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. , 1986, Physical review. B, Condensed matter.

[258]  M. Wittmer,et al.  Electrical characteristics of TiN contacts to N silicon , 1981 .

[259]  Daw,et al.  Interface stresses and their effects on the elastic moduli of metallic multilayers. , 1991, Physical review. B, Condensed matter.

[260]  D. Srolovitz,et al.  Crystal-melt interfacial free energies in metals: fcc versus bcc , 2004 .

[261]  Direct calculation of the hard-sphere crystal /Melt interfacial free energy , 2000, Physical review letters.

[262]  James B. Adams,et al.  First-principles study of metal-carbide/nitride adhesion: Al/VC vs. Al/VN , 2002 .

[263]  A. K. Niessen,et al.  Cohesion in metals , 1988 .

[264]  Car,et al.  Structural, bonding, dynamical, and electronic properties of liquid silicon: An ab initio molecular-dynamics study. , 1991, Physical Review B (Condensed Matter).

[265]  P. H. Dederichs,et al.  Applicability of the broken-bond rule to the surface energy of the fcc metals , 2002 .

[266]  U. S. Rai,et al.  Physical chemistry of binary organic eutectic and monotectic alloys; durene–pyrogallol system , 2000 .

[267]  C. Noguera,et al.  Characteristics of Pd deposition on the MgO(111) surface , 1999 .

[268]  K. Sieradzki,et al.  The stability of fcc (1 1 1) metal surfaces , 2003 .

[269]  U. S. Rai,et al.  Physical chemistry of the organic analog of metal–metal eutectic and monotectic alloys , 1998 .

[270]  Jillian F. Banfield,et al.  Enhanced adsorption of molecules on surfaces of nanocrystalline particles , 1999 .

[271]  A. Kiejna,et al.  Quantum-size effect in thin Al(110) slabs , 1999 .

[272]  G. Renaud Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering , 1998 .

[273]  H. Jones,et al.  The solid–liquid interfacial energy of metals: calculations versus measurements , 2002 .

[274]  S. Russo,et al.  Coexistence of bucky diamond with nanodiamond and fullerene carbon phases , 2003 .

[275]  Giulia Galli,et al.  Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. , 2003, Physical review letters.

[276]  Skriver,et al.  Self-consistent Green's-function technique for surfaces and interfaces. , 1991, Physical review. B, Condensed matter.

[277]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[278]  P. Ramasamy,et al.  Studies on growth, induction period, interfacial energy and metastable zonewidth of m‐nitroaniline , 2005 .

[279]  S. Dalgic,et al.  Orbital free ab initio molecular dynamics study of expanded liquid Cs , 1999 .

[280]  Harald Ibach,et al.  The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures , 1997 .

[281]  C. Jackson,et al.  Vitrification and Crystallization of Organic Liquids Confined to Nanoscale Pores , 1996 .

[282]  J. Kasper,et al.  COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. I. DEFINITIONS AND BASIC PRINCIPLES , 1958 .

[283]  W. Plieth The work function of small metal particles and its relation to electrochemical properties , 1985 .

[284]  V. A. Kuz,et al.  An empirical equation for the enthalpy of vaporization of quantum liquids , 2004 .

[285]  E. A. Guggenheim The thermodynamics of interfaces in systems of several components , 1940 .

[286]  Lei Liu,et al.  Adhesion of metal?carbide/nitride interfaces: Al/TiC and Al/TiN , 2003 .

[287]  T. Gaskell Self-diffusion in liquid metals: A generalized stokes-einstein equation , 1984 .

[288]  H. Skriver,et al.  The formation energy for steps and kinks on cubic transition metal surfaces , 1999 .

[289]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[290]  K. Varma,et al.  Thermal and dielectric studies on binary organic system: benzil–m-nitroaniline , 2001 .

[291]  J. Bretonnet,et al.  Temperature dependence of the diffusion coefficient in liquid alkali metals , 2001 .

[292]  U. S. Rai,et al.  Phase Diagram and Growth Behaviour of Durene–resorcinol System , 2002 .

[293]  Q. Jiang,et al.  Melting thermodynamics of organic nanocrystals , 1999 .

[294]  Car,et al.  Amorphous silicon studied by ab initio molecular dynamics: Preparation, structure, and properties. , 1991, Physical review. B, Condensed matter.

[295]  T. Pusztai,et al.  Nucleation and bulk crystallization in binary phase field theory. , 2002, Physical review letters.

[296]  Daan Frenkel,et al.  Crystallization of weakly charged colloidal spheres: a numerical study , 2002 .

[297]  R. Lerner,et al.  Activation Volumes for Solid-Solid Transformations in Nanocrystals , 2001, Science.

[298]  Thomas A. Read,et al.  Physics of Powder Metallurgy , 1949 .

[299]  J. F. Nicholas,et al.  Bonds broken at atomically flat crystal surfaces—I , 1962 .

[300]  Huang,et al.  Reconstruction of the Pt(111) surface. , 1992, Physical review letters.

[301]  G. Seifert,et al.  Towards controlled production of specific carbon nanostructures— a theoretical study on structural transformations of graphitic and diamond particles , 2001 .

[302]  N. Maraşlı,et al.  Solid–liquid interfacial energy of the eutectoid β phase in the Al–Zn eutectic system , 2004 .

[303]  R. Needs,et al.  Theory of surface stress and surface reconstruction , 1991 .

[304]  N. Papanikolaou,et al.  Broken-bond rule for the surface energies of noble metals , 2001 .

[305]  Davenport,et al.  Molecular-dynamics study of self-diffusion in liquid transition metals. , 1990, Physical review. B, Condensed matter.

[306]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[307]  J. T. Robinson,et al.  CALCULATION OF CORRELATION EFFECTS FOR GRAIN-BOUNDARY AND DISLOCATION-PIPE SELF-DIFFUSION. , 1973 .

[308]  E. Çadırlı,et al.  Solid-liquid surface energy of pivalic acid , 1998 .

[309]  R. Cammarata,et al.  Negative surface energy — clearing up confusion , 2005 .

[310]  F. Banhart The transformation of graphitic onions to diamond under electron irradiation , 1997 .

[311]  S. Phillpot,et al.  Computer simulation of the structure and thermo-elastic properties of a model nanocrystalline material , 1996 .

[312]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[313]  Scheffler,et al.  Reconstruction mechanism of fcc transition metal (001) surfaces. , 1993, Physical review letters.