A numerical investigation of the flow of nanofluids through a micro Tesla valve

In this study, Al2O3-water nanofluids flowing through a micro-scale T45-R type Tesla valve was investigated numerically. Both forward and reverse flows were investigated based on a verified numerical model. The effects of nanofluids flow rate, temperature, and nanoparticle volume fraction on fluid separation in the bifurcated section and the pressure drop characteristics were analyzed. It was found that most of the nanofluids flow into the straight channel of the bifurcated section when flowing forward, and into the arc channel when flowing reversely. The percentage of the main flow increases with flow rate, temperature, and nanoparticle volume fraction. Additionally, the jet flow from the arc channel leads to a larger pressure drop than forward flow. Finally, the diodicity was found most affected by flow rate, and a correlation used to predict the change in diodicity with the flow rate was proposed.中文概要目的微通道以其效率高、体积小等特点在许多领域有 着越来越广泛的应用。特斯拉阀是一种没有运动 部件的止回阀,在微流动控制领域有着明显的优 势。大量研究表明,将纳米流体运用到微尺度通 道中可明显提高换热效率。本文将二者结合,研 究Al2O3-水纳米流体在微尺度特斯拉阀中的流动 特性,为微尺度特斯拉阀以及纳米流体的进一步 研究提供参考。创新点1. 将特斯拉阀应用于纳米流体的微流动控制中; 2. 研究不同的操作条件和不同的介质特性对纳 米流体在微尺度特斯拉阀中流动特性的影响; 3. 研究纳米流体在微尺度特斯拉阀中不同流动 方向的流体分布和压力情况,并根据特斯拉阀的 压降比(反向流动压降/正向流动压降)来分析特 斯拉阀对微流动的控制效果。方法1. 建立微尺度特斯拉阀的三维模型;2. 通过有效 性验证的数值方法,在不同操作条件和不同流动 介质特性的情况下,模拟纳米流体在微尺度特斯 拉阀中正反两个方向的流动;3. 根据流体在流动 过程中的分布以及压力的变化情况,分析温度、 流体流量和纳米颗粒体积分数对纳米流体在微 尺度特斯拉阀中流动特性的影响。结论1. 纳米流体在特斯拉阀中正向流动时,大部分流 体进入了分叉段中的直通道;而反向流动时,大 部分流体进入了分叉段中的弧形通道,并且随着 流量、温度和纳米颗粒体积分数的增加,主流量 的百分比增加。2. 当纳米流体反向流动时,在弧 形通道出口处的射流对压降的影响非常明显,这 是导致反向流动压降大于正向流动的重要原因。 3. 特斯拉阀的压降比受流量的影响最显著;在本 文的研究范围内,压降比随着流量的增加而线性 增加。

[1]  Ali Keshavarz,et al.  Nanofluids thermal behavior analysis using a new dispersion model along with single-phase , 2013 .

[2]  T. Engin,et al.  Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel , 2018, Journal of Thermal Analysis and Calorimetry.

[3]  Ali J. Chamkha,et al.  Transient Analysis on Forced Convection Phenomena in a Fluid Valve Using Nanofluid , 2012 .

[4]  J. Koo,et al.  Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus , 2018 .

[5]  Zhi-jiang Jin,et al.  Parametric study on Tesla valve with reverse flow for hydrogen decompression , 2018 .

[6]  S. Rittidech,et al.  Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid , 2009 .

[7]  Riccardo Amirante,et al.  Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: Experimental validation , 2016 .

[8]  Nguyen N-T.,et al.  Simulation and Optimization of Tesla Valves , 2003 .

[9]  M. Buschmann Nanofluid Heat Transfer in Laminar Pipe Flow With Twisted Tape , 2017 .

[10]  Weikang Jiang,et al.  Flow rate analysis of compressible superheated steam through pressure reducing valves , 2017 .

[11]  Bing Xu,et al.  Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices , 2018, Journal of Zhejiang University-SCIENCE A.

[12]  J. Navas,et al.  Experimental Characterization and Theoretical Modelling of Ag and Au-Nanofluids: A Comparative Study of Their Thermal Properties , 2018, Journal of Nanofluids.

[13]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[14]  S. Suresh,et al.  Transient Flow Boiling Performance and Critical Heat Flux Evaluation of Al2O3-Water Nanofluid in Parallel Microchannels , 2018, Journal of Nanofluids.

[15]  Chin-Tsan Wang,et al.  Tesla Valves in Micromixers , 2014 .

[16]  Scott M. Thompson,et al.  Numerical Investigation of Multistaged Tesla Valves , 2014 .

[17]  A. Abbassi,et al.  Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method , 2016 .

[18]  Jung-Yeul Jung,et al.  Forced convective heat transfer of nanofluids in microchannels , 2009 .

[19]  M. Thansekhar,et al.  On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition , 2017 .

[20]  Junhui Zhang,et al.  Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft , 2017 .

[21]  Jian Kai Wang,et al.  Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements , 2016 .

[22]  Csaba Hős,et al.  Prediction of quarter-wave instability in direct spring operated pressure relief valves with upstream piping by means of CFD and reduced order modelling , 2017 .

[23]  Junhui Zhang,et al.  Discussion on the Reynolds equation for the slipper bearing modeling in axial piston pumps , 2018 .

[24]  M. Syamlal,et al.  MFIX documentation theory guide , 1993 .

[25]  T. Parametthanuwat,et al.  Application of silver nanoparticles contained in ethanol as a working fluid in an oscillating heat pipe with a check valve (CLOHP/CV): a thermodynamic behaviour study , 2015 .

[26]  Scott M. Thompson,et al.  Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves , 2011 .

[27]  D. Ganji,et al.  Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels , 2015 .

[28]  Basil J. Paudel,et al.  Thermal Effects on Micro-Sized Tesla Valves , 2014 .

[29]  H. Mohammed,et al.  Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement , 2017 .

[30]  M. Dehghan,et al.  Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach , 2013 .

[31]  John S. Anagnostopoulos,et al.  Numerical Simulation and Hydrodynamic Design Optimization of a Tesla-Type Valve for Micropumps , 2005 .

[32]  M. Shedid Hydrodynamic Characteristics of a Butterfly Valve Controlling Al 2 O 3 /Water Nanofluid Flow , 2015 .

[33]  Zhi-jiang Jin,et al.  Computational fluid dynamics analysis on orifice structure inside valve core of pilot-control angle globe valve , 2018 .

[34]  Davood Domiri Ganji,et al.  Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink , 2016 .

[35]  D. Florea,et al.  Design and operation of a Tesla-type valve for pulsating heat pipes , 2017 .

[36]  G. Filo,et al.  Analysis of Flow forces in the initial phase of throttle gap opening in a proportional control valve , 2018 .

[37]  Stephen U. S. Choi NANOFLUIDS: FROM VISION TO REALITY THROUGH RESEARCH , 2009 .