Nonholonomic Mobile Robot with Kinematic Disturbances in the Trajectory Tracking: A Variable Structure Controller

In this paper, a trajectory tracking control for a nonholonomic mobile robot subjected to kinematic disturbances is proposed. A variable structure controller based on the sliding mode theory is used, and applied to compensate these disturbances. To minimize the problems found in practical implementations of the classical variable structure controllers, and eliminate the chattering phenomenon a neural compensator is used, which is nonlinear and continuous, in lieu of the discontinuous portion of the control signals present in classical forms. The proposed neural compensator is designed by the Gaussian radial basis function neural networks modeling technique and does not require the time-consuming training process. Stability analysis is guaranteed based on the Lyapunov method. Simulation results are provided to show the effectiveness of the proposed approach.

[1]  Hassan K. Khalil,et al.  Output feedback control of nonlinear systems using RBF neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[2]  Jong-Hwan Kim,et al.  Variable Structure Control of Nonholonomic Wheeled Mobile Robot , 1995, ICRA.

[3]  V. I. Utkin,et al.  Sliding Mode Control of Mobile Robots. , 1994 .

[4]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[5]  Douglas Wildgrube Bertol,et al.  On a Wheeledmobile Robot Trajectory Tracking Control: 1st and 2nd Order Sliding Modes Applied to a Compensated Inverse Dynamics , 2010 .

[6]  Okyay Kaynak,et al.  The fusion of computationally intelligent methodologies and sliding-mode control-a survey , 2001, IEEE Trans. Ind. Electron..

[7]  Nardênio Almeida Martins,et al.  On a Wheeled Mobile Robot Tracking Control: Sliding Mode Control Design , 2010 .

[8]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[9]  V. I. Utkin,et al.  Stabilization of non-holonomic mobile robots using Lyapunov functions for navigation and sliding mode control , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  Avinash Jagarlamudi Trajectory tracking of a nonholonomic mobile robot , 2012 .

[11]  Tao Liu,et al.  Trajectory tracking for nonholonomic wheeled mobile robots based on an improved sliding mode control method , 2009, 2009 ISECS International Colloquium on Computing, Communication, Control, and Management.

[12]  Jang-Myung Lee,et al.  Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space , 2009 .

[13]  Chu Jian,et al.  Variable structure control theory and application: a survey , 2000, Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393).

[14]  E.B. Castelan,et al.  Trajectory tracking of a nonholonomic mobile robot with parametric and nonparametric uncertainties: A proposed neural control , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[15]  Weibing Gao,et al.  Variable structure control of nonlinear systems: a new approach , 1993, IEEE Trans. Ind. Electron..

[16]  Okyay Kaynak,et al.  Variable structure systems theory based training strategies for computationally intelligent systems , 2001, IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243).

[17]  Sarah K. Spurgeon,et al.  Sliding Mode Control , 1998 .

[18]  Gyula Mester,et al.  Motion Control of Wheeled Mobile Robots , 2006 .

[19]  Annemarie M. Kökösy,et al.  Practical stabilization and tracking of a wheeled mobile robot with integral sliding mode controller , 2007, 2007 46th IEEE Conference on Decision and Control.

[20]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[21]  Jung-Min Yang,et al.  Sliding Mode Motion Control of Nonholonomic Mobile Robots , 1999 .

[22]  Shuzhi Sam Ge,et al.  Robust adaptive NN feedback linearization control of nonlinear systems , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[23]  Roberto Kawakami Harrop Galvão,et al.  Adaptive control for mobile robot using wavelet networks , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[24]  R. Decarlo,et al.  Variable structure control of nonlinear multivariable systems: a tutorial , 1988, Proc. IEEE.

[25]  Jin Young Choi,et al.  Sliding mode tracking control of nonholonomic wheeled mobile robots , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[26]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[27]  Dimitri Jeltsema,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[28]  Woojin Chung,et al.  Wheeled Robots , 2008, Springer Handbook of Robotics.