Formal definitions of web information search

Research in Web search engines has been criticized for lacking underlying theories and models. Theories adopted from traditional information retrieval research have been found in many ways lacking and inefficient in dealing with information retrieval in the Web context, primarily because of the amount of information and its dynamic nature, the hyperlinked structure, and multimedia sources. Appropriate Web models and theories for search engines will make web search and information retrieval problems easier to formulate and comprehend. This in turn helps to highlight holes in current Web search engine techniques. We analyze and categorize previous Web and information retrieval models. Grounded on previous work, we then propose a new Web information retrieval model based on both objective and subjective criteria. The performance of the new model is systematically compared with other IR models, and contributions of this work are highlighted.

[1]  Sriram Raghavan,et al.  Searching the Web , 2001, ACM Trans. Internet Techn..

[2]  Mirza Mohd. Sufyan Beg User feedback based enhancement in web search quality , 2005, Inf. Sci..

[3]  Kam-Fai Wong,et al.  Aboutness from a commonsense perspective , 2000, J. Am. Soc. Inf. Sci..

[4]  Sándor Dominich On applying formal grammar and languages, and deduction to information retrieval modelling , 2001 .

[5]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[6]  C. J. van Rijsbergen,et al.  A Probabilistic Logic for Information Retrieval , 2005, ECIR.

[7]  C. Lee Giles,et al.  Accessibility of information on the Web , 2000, INTL.

[8]  Martin Braschler,et al.  Cross-Language Information Retrieval in a Multilingual Legal Domain , 1997, ECDL.

[9]  Edward A. Fox,et al.  Streams, structures, spaces, scenarios, societies (5s): A formal model for digital libraries , 2004, TOIS.

[10]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[11]  Gabriella Kazai,et al.  A general matrix framework for modelling Information Retrieval , 2006, Inf. Process. Manag..

[12]  Mounia Lalmas,et al.  Combining Web Document Representations in a Bayesian Inference Network Model Using Link and Content-Based Evidence , 2002, ECIR.

[13]  Franco Scarselli,et al.  Inside PageRank , 2005, TOIT.

[14]  Djemel Ziou,et al.  Image Retrieval from the World Wide Web: Issues, Techniques, and Systems , 2004, CSUR.

[15]  Jean Tague-Sutcliffe,et al.  Complete formal model for information retrieval systems , 1991, SIGIR '91.

[16]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[17]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[18]  Ramesh C. Jain,et al.  World-Wide Maze , 1995, IEEE Multim..

[19]  Leo Egghe,et al.  A Theoretical Study of Recall and Precision Using a Topological Approach to Information Retrieval , 1998, Inf. Process. Manag..

[20]  Junghoo Cho,et al.  Page quality: in search of an unbiased web ranking , 2005, SIGMOD '05.

[21]  Ophir Frieder,et al.  Information Retrieval: Algorithms and Heuristics , 1998 .

[22]  Norbert Fuhr,et al.  Probabilistic Models in Information Retrieval , 1992, Comput. J..

[23]  Weiyi Meng,et al.  Using the Structure of HTML Documents to Improve Retrieval , 1997, USENIX Symposium on Internet Technologies and Systems.

[24]  Fabio Crestani,et al.  Logic and Uncertainty in Information Retrieval , 2001, ESSIR.

[25]  Terrence A. Brooks,et al.  Web search: how the Web has changed information retrieval , 2003, Information Research.

[26]  King-Lup Liu,et al.  Building efficient and effective metasearch engines , 2002, CSUR.

[27]  Daniel M. Everett,et al.  Topology of Document Retrieval Systems , 1992, J. Am. Soc. Inf. Sci..