Hierarchical morse complexes for piecewise linear 2-manifolds

We present algorithms for constructing a hierarchy of increasingly coa rse Morse complexes that decompose a piecewise linear 2-manifold. While Morse complexes are defined only in the smooth category, we extend the construction to the piecewise linear category by ensuring structural integrity and simulating differentiability. We then simplify Morse complexes by cancelling pairs of critical points in order of increasing persistence.

[1]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[2]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[3]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[4]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[5]  Andrew H. Wallace,et al.  Differential topology; first steps , 1968 .

[6]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[7]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[8]  Valerio Pascucci,et al.  Visualization of scalar topology for structural enhancement , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[9]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[10]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[11]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[12]  Konstantin Mischaikow,et al.  Conley index theory , 1995 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[15]  Mark de Berg,et al.  Trekking in the Alps Without Freezing or Getting Tired , 1993, ESA.

[16]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.