Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications

[1]  Chengjie Sun,et al.  Correction to “Composition Tunable Manganese Ferrite Nanoparticles for Optimized T2 Contrast Ability” , 2017, Chemistry of Materials.

[2]  T. Pellegrino,et al.  Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. , 2021, Chemical Society reviews.

[3]  T. Pellegrino,et al.  Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study , 2021, Pharmaceutics.

[4]  P. Guardia,et al.  Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications , 2021, Nanoscale.

[5]  Handbook of Greener Synthesis of Nanomaterials and Compounds , 2021 .

[6]  A. Corma,et al.  Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis , 2020, ACS applied nano materials.

[7]  Adnan Memic,et al.  Magnetic Nanoparticles in Cancer Therapy and Diagnosis , 2020, Advanced healthcare materials.

[8]  Joseph J. Richardson,et al.  Nanomedicine toward 2040. , 2020, Nano letters.

[9]  B. Mamba,et al.  Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. , 2020, Materials science & engineering. C, Materials for biological applications.

[10]  D. Irvine,et al.  Enhancing cancer immunotherapy with nanomedicine , 2020, Nature Reviews Immunology.

[11]  T. Pellegrino,et al.  Confining iron oxide nanocubes inside submicrometric cavities as a key strategy to preserve magnetic heat losses in an intracellular environment. , 2019, ACS applied materials & interfaces.

[12]  Manh-Huong Phan,et al.  Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. , 2019, Small.

[13]  Arnd Pralle,et al.  Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals. , 2019, Nanoscale.

[14]  D. F. Barber,et al.  Flower-like Mn-doped magnetic nanoparticles functionalized with αvβ3-integrin-ligand to efficiently induce intracellular heat after AMF-exposition triggering glioma cell death. , 2019, ACS applied materials & interfaces.

[15]  T. Pellegrino,et al.  Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses , 2019, Chemistry of materials : a publication of the American Chemical Society.

[16]  C. Sangregorio,et al.  Precise Size Control of the Growth of Fe3O4 Nanocubes Over a Wide Size Range Using a Rationally Designed One-Pot Synthesis. , 2019, ACS nano.

[17]  M. Morales,et al.  Aggregation effects on the magnetic properties of iron oxide colloids , 2019, Nanotechnology.

[18]  T. Pellegrino,et al.  Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy , 2019, ACS applied materials & interfaces.

[19]  S. Veintemillas-Verdaguer,et al.  Design strategies for shape‐controlled magnetic iron oxide nanoparticles , 2019, Advanced drug delivery reviews.

[20]  R. Costo,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2003, Magnetic Nanoparticles in Biosensing and Medicine.

[21]  F. Ludwig,et al.  Fe2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. , 2018, Nano letters.

[22]  T. Pellegrino,et al.  Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives. , 2018, Accounts of chemical research.

[23]  R. Ivkov,et al.  Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans , 2018, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[24]  T. Pellegrino,et al.  Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance , 2017, ACS nano.

[25]  P. Prasad,et al.  Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities. , 2017, ACS nano.

[26]  Q. Pankhurst,et al.  On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy , 2017 .

[27]  Alaaldin M. Alkilany,et al.  Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles , 2017 .

[28]  L. Lacroix,et al.  Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. , 2016, Angewandte Chemie.

[29]  M. Morales,et al.  In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice , 2016, Scientific Reports.

[30]  J. Alonso,et al.  Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers. , 2016, ACS applied materials & interfaces.

[31]  J. Vijaya,et al.  Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications , 2016 .

[32]  J. Alonso,et al.  Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia , 2016 .

[33]  K. Ulbrich,et al.  Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. , 2016, Chemical reviews.

[34]  J. Alonso,et al.  Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects , 2016 .

[35]  P. Guardia,et al.  CoxFe3–xO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size , 2016 .

[36]  Jelena Kolosnjaj-Tabi,et al.  Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. , 2016, ACS nano.

[37]  Trevor Coward,et al.  An In-Vitro Study , 2016 .

[38]  Olivier Sandre,et al.  Fundamentals and advances in magnetic hyperthermia , 2015, Applied Physics Reviews.

[39]  D. Pozo,et al.  Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. , 2015, Nanoscale.

[40]  R. Miranda,et al.  Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles , 2014 .

[41]  J. Tuček,et al.  Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. , 2014, ACS nano.

[42]  Christophe Lefevre,et al.  One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. , 2014, Journal of materials chemistry. B.

[43]  B. Mehdaoui,et al.  An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples--a useful setup for magnetic hyperthermia applications. , 2014, The Review of scientific instruments.

[44]  P. Decuzzi,et al.  Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment. , 2014, ACS nano.

[45]  C. Mirkin,et al.  Centrifugal Shape Sorting and Optical Response of Polyhedral Gold Nanoparticles , 2013, Advanced materials.

[46]  L. Lartigue,et al.  Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. , 2013, ACS nano.

[47]  Francesca Peiró,et al.  Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications , 2013, Scientific Reports.

[48]  G. Hadjipanayis,et al.  Synthesis and magnetic properties of core/shell FeO/Fe3O4 nano-octopods , 2013 .

[49]  Masahiro Yoshimura,et al.  Handbook of hydrothermal technology , 2013 .

[50]  R. Miranda,et al.  Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications , 2012 .

[51]  Jung-tak Jang,et al.  Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. , 2012, Nano letters.

[52]  T. Pellegrino,et al.  Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. , 2012, Nanoscale.

[53]  Liberato Manna,et al.  Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. , 2012, ACS nano.

[54]  X. Jiao,et al.  Solvothermal Synthesis of Tunable Electroactive Magnetite Nanorods by Controlling the Side Reaction , 2012 .

[55]  François Guyot,et al.  Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. , 2011, ACS nano.

[56]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.

[57]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[58]  Zhichuan J. Xu,et al.  Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. , 2010, Nanoscale.

[59]  R. Ma,et al.  Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes , 2010 .

[60]  P. Guardia,et al.  Controlled synthesis of iron oxide nanoparticles over a wide size range. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[61]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[62]  Shouheng Sun,et al.  Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. , 2009, Chemical Society reviews.

[63]  Matthias Zeisberger,et al.  Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. , 2009, Journal of magnetism and magnetic materials.

[64]  Taeghwan Hyeon,et al.  Synthesis of uniform ferrimagnetic magnetite nanocubes. , 2009, Journal of the American Chemical Society.

[65]  M. Muhammed,et al.  Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. , 2008, Journal of the American Chemical Society.

[66]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[67]  Peter Wust,et al.  Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. , 2007, European urology.

[68]  M. Hurwitz Editorial comment on: Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. , 2007, European urology.

[69]  M. Kovalenko,et al.  Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. , 2007, Journal of the American Chemical Society.

[70]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[71]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[72]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[73]  P Wust,et al.  Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[74]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[75]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[76]  Peter Wust,et al.  Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. , 2004, Medical physics.

[77]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[78]  S. Loening,et al.  Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia , 2001 .

[79]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[80]  J. Gajewski,et al.  Coal liquefaction model studies: free radical chain decomposition of diphenylpropane, dibenzyl ether, and phenethyl phenyl ether via .beta.-scission reactions , 1982 .

[81]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .