Aberrant stem cell and developmental programs in pediatric leukemia

Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.

[1]  T. Mercher,et al.  Efficacy of DYRK1A inhibitors in novel models of Down syndrome acute lymphoblastic leukemia , 2024, Haematologica.

[2]  Sol Katzman,et al.  Targeting IGF2BP3 enhances antileukemic effects of menin-MLL inhibition in MLL-AF4 leukemia , 2023, Blood advances.

[3]  A. Roy,et al.  Bispecific CAR-iNKT Immunotherapy for High Risk MLL-Rearranged Acute Lymphoblastic Leukemia , 2023, Blood.

[4]  D. Rao,et al.  RNA binding protein IGF2BP1 synergizes with ETV6-RUNX1 to drive oncogenic signaling in B-cell Acute Lymphoblastic Leukemia , 2023, Journal of Experimental & Clinical Cancer Research.

[5]  F. He,et al.  Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML , 2023, Genome Biology.

[6]  Qi Zhang,et al.  Preclinical development of 1B7/CD3, a novel anti-TSLPR bispecific antibody that targets CRLF2-rearranged Ph-like B-ALL , 2023, Leukemia.

[7]  Xin Zhang,et al.  C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. , 2023, European journal of pharmacology.

[8]  M. Manz,et al.  Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells , 2023, Molecular therapy oncolytics.

[9]  M. Caligiuri,et al.  Off-the-shelf CAR–engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia , 2023, Blood advances.

[10]  T. MacDonald,et al.  The LIN28B–let‐7–PBK pathway is essential for group 3 medulloblastoma tumor growth and survival , 2023, Molecular oncology.

[11]  M. Loh,et al.  Genomic landscape of Down syndrome-associated acute lymphoblastic leukemia. , 2023, Blood.

[12]  S. Rives,et al.  A miRNA signature related to stemness identifies high‐risk patients in paediatric acute myeloid leukaemia , 2023, British journal of haematology.

[13]  John G Doench,et al.  MEN1 mutations mediate clinical resistance to menin inhibition , 2023, Nature.

[14]  S. Armstrong,et al.  The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia , 2023, Nature.

[15]  Jeffrey A. Magee,et al.  A fetal tumor suppressor axis abrogates MLL-fusion-driven acute myeloid leukemia. , 2023, Cell reports.

[16]  S. Jahan,et al.  BTYNB, an inhibitor of RNA binding protein IGF2BP1 reduces proliferation and induces differentiation of leukemic cancer cells , 2023, Saudi journal of biological sciences.

[17]  M. Yaspo,et al.  RUNX1 isoform disequilibrium promotes the development of trisomy 21–associated myeloid leukemia , 2022, Blood.

[18]  S. Armstrong,et al.  Mutant NPM1 directly regulates oncogenic transcription in acute myeloid leukemia. , 2022, Cancer discovery.

[19]  A. De Matteo,et al.  Specific lncRNA signatures discriminate childhood acute leukaemias: a pilot study , 2022, Cancer Cell International.

[20]  K. Davis,et al.  Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial , 2022, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  L. Michaelis,et al.  Safety and efficacy of pracinostat in combination with gemtuzumab ozogamicin (PraGO) in patients with relapsed/refractory acute myeloid leukemia. , 2022, Leukemia research.

[22]  F. Wen,et al.  PROM1 and CTGF Expression in Childhood MLL-Rearrangement Acute Lymphoblastic Leukemia , 2022, Journal of oncology.

[23]  B. Huntly,et al.  HOXA9 forms a repressive complex with nuclear matrix-associated protein SAFB to maintain acute myeloid leukemia , 2022, bioRxiv.

[24]  C. Meyer,et al.  Normal and Aberrant TALE-Class Homeobox Gene Activities in Pro-B-Cells and B-Cell Precursor Acute Lymphoblastic Leukemia , 2022, International journal of molecular sciences.

[25]  Nicola K. Wilson,et al.  Multi-omics analysis defines highly refractory RAS burdened immature subgroup of infant acute lymphoblastic leukemia , 2022, Nature Communications.

[26]  F. Ginhoux,et al.  Oncofetal reprogramming in tumour development and progression , 2022, Nature Reviews Cancer.

[27]  G. Sauvageau,et al.  HMGA2 expression defines a subset of human AML with immature transcriptional signature and vulnerability to G2/M inhibition , 2022, Blood advances.

[28]  A. Bagashev,et al.  P1421: BIMODAL TARGETING OF CYTOKINE RECEPTOR-LIKE FACTOR 2 (CRLF2) WITH JAK INHIBITION AND CHIMERIC ANTIGEN RECEPTOR T CELL IMMUNOTHERAPY IN DOWN SYNDROME ACUTE LYMPHOBLASTIC LEUKEMIA , 2022, HemaSphere.

[29]  M. Salido,et al.  p53 wild-type colorectal cancer cells that express a fetal gene signature are associated with metastasis and poor prognosis , 2022, Nature Communications.

[30]  Melissa A. Kinney,et al.  Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis , 2022, Cell reports.

[31]  R. Macleod,et al.  The Hematopoietic TALE-Code Shows Normal Activity of IRX1 in Myeloid Progenitors and Reveals Ectopic Expression of IRX3 and IRX5 in Acute Myeloid Leukemia , 2022, International journal of molecular sciences.

[32]  Ping Zhang,et al.  The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability , 2022, Experimental & molecular medicine.

[33]  S. Mousa,et al.  Targeting Thyrointegrin αvβ3 Using Fluorobenzyl Polyethylene Glycol Conjugated Tetraiodothyroacetic Acid (NP751) in Acute Myeloid Leukemia , 2022, Frontiers in Oncology.

[34]  S. Heatley,et al.  HMGN1 plays a significant role in CRLF2 driven Down Syndrome leukemia and provides a potential therapeutic target in this high-risk cohort , 2021, Oncogene.

[35]  H. Bolouri,et al.  A B-cell developmental gene regulatory network is activated in infant AML , 2021, PloS one.

[36]  Hossam A. Hodeib,et al.  Acute lymphoblastic leukemia in children and SALL4 and BMI-1 gene expression , 2021, Pediatric Research.

[37]  Alex S. Felmeister,et al.  Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell–like blasts in KMT2A-rearranged leukemia , 2021, Blood.

[38]  T. Naoe,et al.  Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. , 2021, Blood.

[39]  Monika S. Kowalczyk,et al.  Blood and immune development in human fetal bone marrow and Down syndrome , 2021, Nature.

[40]  Vahid Kaveh,et al.  Alteration of PPAR‐GAMMA (PPARG; PPARγ) and PTEN gene expression in acute myeloid leukemia patients and the promising anticancer effects of PPARγ stimulation using pioglitazone on AML cells , 2021, Molecular genetics & genomic medicine.

[41]  P. Marlton,et al.  Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia , 2021, Blood.

[42]  Elisabeth F. Heuston,et al.  Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development , 2021, Cell reports.

[43]  S. Mousa,et al.  Novel Polyethylene Glycol-Conjugated Triazole Derivative with High Thyrointegrin αvβ3 Affinity in Acute Myeloid Leukemia Management , 2021, Cancers.

[44]  Sol Katzman,et al.  The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis , 2021, Leukemia.

[45]  J. Dick,et al.  Mapping the cellular origin and early evolution of leukemia in Down syndrome , 2021, Science.

[46]  K. Ottersbach,et al.  MiR-130b and miR-128a are essential lineage-specific co-drivers of t(4;11) MLL-AF4 acute leukemia. , 2021, Blood.

[47]  M. Yaspo,et al.  The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis , 2021, bioRxiv.

[48]  S. Tohda,et al.  Effects of HOXA9 Inhibitor DB818 on the Growth of Acute Myeloid Leukaemia Cells , 2021, AntiCancer Research.

[49]  H. Einsele,et al.  Proof-of-concept for Rapidly Switchable Universal CAR-T Platform with UniCAR-T-CD123 in Relapsed/Refractory AML. , 2021, Blood.

[50]  H. Ditzel,et al.  HMGA2 as a Critical Regulator in Cancer Development , 2021, Genes.

[51]  A. Iwama,et al.  Overexpression of Hmga2 activates Igf2bp2 and remodels transcriptional program of Tet2-deficient stem cells in myeloid transformation , 2021, Oncogene.

[52]  Y. Goo,et al.  DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. , 2021, The Journal of clinical investigation.

[53]  Xue-Qun Luo,et al.  Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238 , 2020, Hematology.

[54]  A. Fusco,et al.  Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays , 2020, Scientific Reports.

[55]  K. Ottersbach,et al.  HOXA9/IRX1 expression pattern defines two subgroups of infant MLL-AF4-driven acute lymphoblastic leukemia , 2020, Experimental hematology.

[56]  Alice Wedler,et al.  The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer , 2020, Nucleic acids research.

[57]  Peng Wu Inhibition of RNA-binding proteins with small molecules , 2020, Nature Reviews Chemistry.

[58]  G. Daley,et al.  Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target , 2020, Nature Communications.

[59]  S. Armstrong,et al.  Novel Inhibitors of the Histone-Methyltransferase DOT1L Show Potent Antileukemic Activity in Patient-derived Xenografts. , 2020, Blood.

[60]  P. Lőrincz,et al.  MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia , 2020, Journal of Translational Medicine.

[61]  Deng-Chyang Wu,et al.  Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells , 2020, Journal of experimental & clinical cancer research : CR.

[62]  J. Moffat,et al.  The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. , 2020, Cell stem cell.

[63]  B. Becher,et al.  Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells , 2020, Leukemia.

[64]  P. Vyas,et al.  H3K79me2/3 controls enhancer–promoter interactions and activation of the pan-cancer stem cell marker PROM1/CD133 in MLL-AF4 leukemia cells , 2020, Leukemia.

[65]  M. Rivera,et al.  LIN28B Underlies the Pathogenesis of a Subclass of Ewing Sarcoma LIN28B Control of EWS-FLI1 Stability. , 2020, Cell reports.

[66]  Henry W. Long,et al.  Chromatin accessibility promotes hematopoietic and leukemia stem cell activity , 2020, Nature Communications.

[67]  Harpreet Singh,et al.  Dysregulation of miRNA expression and their prognostic significance in paediatric cytogenetically normal acute myeloid leukaemia , 2020, British journal of haematology.

[68]  Fatih Kocabaş,et al.  Development of Small Molecule MEIS Inhibitors that modulate HSC activity , 2020, bioRxiv.

[69]  Hong Zhao,et al.  Exosomes from CD133+ cells carrying circ‐ABCC1 mediate cell stemness and metastasis in colorectal cancer , 2020, Journal of cellular biochemistry.

[70]  Pingping Shen,et al.  Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: a single-arm, open-label, phase II trial , 2020, Oncoimmunology.

[71]  R. Tiedt,et al.  New Potent DOT1L Inhibitors for in Vivo Evaluation in Mouse. , 2019, ACS medicinal chemistry letters.

[72]  S. Yao,et al.  Donor-Derived CD123-Targeted CAR T Cell Serves as a RIC Regimen for Haploidentical Transplantation in a Patient With FUS-ERG+ AML , 2019, Front. Oncol..

[73]  K. Sachs,et al.  Single-cell gene expression analyses reveal distinct self-renewing and proliferating subsets in the leukemia stem cell compartment in acute myeloid leukemia. , 2019, Cancer research.

[74]  M. Hafner,et al.  RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. , 2019, Leukemia.

[75]  Pei-Ming Yang,et al.  Gene Expression Signature-Based Approach Identifies Antifungal Drug Ciclopirox As a Novel Inhibitor of HMGA2 in Colorectal Cancer , 2019, Biomolecules.

[76]  J. Downing,et al.  A 6-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia , 2019, Leukemia.

[77]  A. Ford,et al.  The Role of MicroRNA in Paediatric Acute Lymphoblastic Leukaemia: Challenges for Diagnosis and Therapy , 2019, Journal of oncology.

[78]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[79]  P. Campbell,et al.  Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. , 2019, Cancer cell.

[80]  B. Povinelli,et al.  Discovery of a CD10 negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs. , 2019, Blood.

[81]  Amir K. Foroushani,et al.  Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3 , 2019, Genes & development.

[82]  Supat Thongjuea,et al.  Heterogeneous disease-propagating stem cells in juvenile myelomonocytic leukemia , 2019, bioRxiv.

[83]  D. Beck,et al.  HMGA2 promotes long-term engraftment and myeloerythroid differentiation of human hematopoietic stem and progenitor cells. , 2019, Blood advances.

[84]  E. Eyras,et al.  CD133-directed CAR T-cells for MLL leukemia: on-target, off-tumor myeloablative toxicity , 2019, Leukemia.

[85]  I. Varela,et al.  Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis , 2019, Haematologica.

[86]  Daniel P. Sweat,et al.  Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model. , 2019, Journal of medicinal chemistry.

[87]  F. Gutiérrez-Agüera,et al.  NG2 antigen is a therapeutic target for MLL-rearranged B-cell acute lymphoblastic leukemia , 2019, Leukemia.

[88]  J. Ko,et al.  Roles of CD133 in microvesicle formation and oncoprotein trafficking in colon cancer , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[89]  E. Lander,et al.  Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation , 2018, Nature Genetics.

[90]  Charles Y. Lin,et al.  Mutant NPM1 Maintains the Leukemic State through HOX Expression. , 2018, Cancer cell.

[91]  Stanley W. K. Ng,et al.  The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia , 2018, Leukemia.

[92]  Y. Zhai,et al.  TanCAR T cells targeting CD19 and CD133 efficiently eliminate MLL leukemic cells , 2018, Leukemia.

[93]  G. Sauvageau,et al.  High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia , 2018, Blood Cancer Journal.

[94]  A. Baruchel,et al.  Polycomb repressive complex 2 haploinsufficiency identifies a high-risk subgroup of pediatric acute myeloid leukemia , 2018, Leukemia.

[95]  S. Armstrong,et al.  The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. , 2018, Blood.

[96]  G. Daley,et al.  Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28 , 2018, Cell reports.

[97]  Zhiqiang Wu,et al.  CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial , 2018, Oncoimmunology.

[98]  Q. Rao,et al.  Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells , 2018, Journal of Hematology & Oncology.

[99]  T. Owa,et al.  Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. , 2018, The Lancet. Oncology.

[100]  Peter A. Jones,et al.  A phase 1 study of azacitidine combined with chemotherapy in childhood leukemia: a report from the TACL consortium. , 2018, Blood.

[101]  Katrien Van Roosbroeck,et al.  miR-155 in cancer drug resistance and as target for miRNA-based therapeutics , 2018, Cancer and Metastasis Reviews.

[102]  E. Tholouli,et al.  Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia , 2018, Cell reports.

[103]  Jingmei Ye,et al.  Silencing of HMGA2 reverses retardance of cell differentiation in human myeloid leukaemia , 2018, British Journal of Cancer.

[104]  R. Gregory,et al.  A small molecule screen to identify regulators of let-7 targets , 2017, Scientific Reports.

[105]  A. Scorilas,et al.  miR-125b predicts childhood acute lymphoblastic leukaemia poor response to BFM chemotherapy treatment , 2017, British Journal of Cancer.

[106]  S. Armstrong,et al.  miR-99 regulates normal and malignant hematopoietic stem cell self-renewal , 2017, The Journal of experimental medicine.

[107]  C. Récher,et al.  Phase 1 dose-escalation study of oral abexinostat for the treatment of patients with relapsed/refractory higher-risk myelodysplastic syndromes, acute myeloid leukemia, or acute lymphoblastic leukemia , 2017, Leukemia & lymphoma.

[108]  T. Tan,et al.  Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia , 2017, Journal of Hematology & Oncology.

[109]  Alexander Medvinsky,et al.  Human haematopoietic stem cell development: from the embryo to the dish , 2017, Development.

[110]  L. Rimsza,et al.  Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition , 2017, The Journal of clinical investigation.

[111]  G. Falco,et al.  Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia , 2017, Cell Death & Disease.

[112]  A. Engelman,et al.  Haematopoietic stem and progenitor cells from human pluripotent stem cells , 2017, Nature.

[113]  L. Tang,et al.  A 3-miRNA signature predicts prognosis of pediatric and adolescent cytogenetically normal acute myeloid leukemia , 2017, Oncotarget.

[114]  C. Porcher,et al.  SCL/TAL1: a multifaceted regulator from blood development to disease. , 2017, Blood.

[115]  M. Menezes,et al.  The LIN28/let-7 Pathway in Cancer , 2017, Front. Genet..

[116]  M. Konopleva,et al.  MLL-AF4 Spreading Identifies Binding Sites that Are Distinct from Super-Enhancers and that Govern Sensitivity to DOT1L Inhibition in Leukemia , 2017, Cell reports.

[117]  Claude Preudhomme,et al.  A 17-gene stemness score for rapid determination of risk in acute leukaemia , 2016, Nature.

[118]  Nicolò Riggi,et al.  IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer , 2016, Genes & development.

[119]  E. Stanley,et al.  Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros , 2016, Nature Biotechnology.

[120]  D. Casero,et al.  Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. , 2016, Immunity.

[121]  Christian A. Ross,et al.  LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. , 2016, Cell stem cell.

[122]  G. Berx,et al.  LIN28B is over-expressed in specific subtypes of pediatric leukemia and regulates lncRNA H19 , 2016, Haematologica.

[123]  B. Gruhn,et al.  EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia , 2016, Journal of Cancer Research and Clinical Oncology.

[124]  R. Marschalek,et al.  The IRX1/HOXA connection: insights into a novel t(4;11)- specific cancer mechanism , 2016, Oncotarget.

[125]  Sol Katzman,et al.  RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. , 2016, The Journal of clinical investigation.

[126]  F. Speleman,et al.  LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia. , 2016, Blood.

[127]  A. Elkahloun,et al.  PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease. , 2016, Cancer research.

[128]  H. Tan,et al.  Amplified HMGA2 promotes cell growth by regulating Akt pathway in AML , 2016, Journal of Cancer Research and Clinical Oncology.

[129]  M. Eguchi,et al.  HMGA2 as a potential molecular target in KMT2A‐AFF1‐positive infant acute lymphoblastic leukaemia , 2015, British journal of haematology.

[130]  N. Maeda,et al.  Osteopontin-integrin interaction as a novel molecular target for antibody-mediated immunotherapy in adult T-cell leukemia , 2015, Retrovirology.

[131]  P. Carmeliet,et al.  Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. , 2015, Stem cell research.

[132]  M. Caraglia,et al.  EZH2 is increased in paediatric T-cell acute lymphoblastic leukemia and is a suitable molecular target in combination treatment approaches , 2015, Journal of experimental & clinical cancer research : CR.

[133]  Jiajia Chen,et al.  MicroRNA biomarker identification for pediatric acute myeloid leukemia based on a novel bioinformatics model , 2015, Oncotarget.

[134]  Daniel E. Cook,et al.  DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3 , 2015, The Journal of experimental medicine.

[135]  Yan Zhou,et al.  Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a , 2015, The Journal of experimental medicine.

[136]  J. Rinn,et al.  Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells , 2015, Nature Genetics.

[137]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[138]  S. Izraeli,et al.  Haematopoietic development and leukaemia in Down syndrome , 2014, British journal of haematology.

[139]  J. Qian,et al.  Low SOX17 expression: prognostic significance in de novo acute myeloid leukemia with normal cytogenetics , 2014, Clinical chemistry and laboratory medicine.

[140]  Nowlan H. Freese,et al.  A Novel Gain-Of-Function Mutation of the Proneural IRX1 and IRX2 Genes Disrupts Axis Elongation in the Araucana Rumpless Chicken , 2014, PloS one.

[141]  Pablo Menendez,et al.  HOXA9 promotes hematopoietic commitment of human embryonic stem cells. , 2014, Blood.

[142]  A. Hochberg,et al.  Oncofetal H19 RNA promotes tumor metastasis. , 2014, Biochimica et biophysica acta.

[143]  A. Laganà,et al.  Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia , 2014, Blood Cancer Journal.

[144]  J. Hess,et al.  C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis , 2014, Proceedings of the National Academy of Sciences.

[145]  Robert A Copeland,et al.  Nonclinical pharmacokinetics and metabolism of EPZ‐5676, a novel DOT1L histone methyltransferase inhibitor , 2014, Biopharmaceutics & drug disposition.

[146]  S. Orkin,et al.  Reprogramming Committed Murine Blood Cells to Induced Hematopoietic Stem Cells with Defined Factors , 2014, Cell.

[147]  L. Resar,et al.  The high mobility group A1 molecular switch: turning on cancer – can we turn it off? , 2014, Expert opinion on therapeutic targets.

[148]  J. Ritz,et al.  Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: mechanism, function, and implication for a potential novel therapeutic target. , 2014, Experimental hematology.

[149]  A. Curley,et al.  GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. , 2013, Blood.

[150]  Hua Zhang,et al.  MiR-99a may serve as a potential oncogene in pediatric myeloid leukemia , 2013, Cancer Cell International.

[151]  C. Eaves,et al.  Developmental changes in hematopoietic stem cell properties , 2013, Experimental & Molecular Medicine.

[152]  R. Pieters,et al.  MiR-125b, miR-100 and miR-99a co-regulate vincristine resistance in childhood acute lymphoblastic leukemia. , 2013, Leukemia research.

[153]  Y. T. Lee,et al.  LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. , 2013, Blood.

[154]  David G. Kent,et al.  The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells , 2013, Nature Cell Biology.

[155]  R. M. Pope,et al.  Biochemical and biological characterization of exosomes containing prominin-1/CD133 , 2013, Molecular Cancer.

[156]  D. Tenen,et al.  SALL4 is a key transcription regulator in normal human hematopoiesis , 2013, Transfusion.

[157]  D. Liang,et al.  Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. , 2013, Blood.

[158]  H. Kamal,et al.  Expression of CD133 in acute leukemia , 2013, Medical Oncology.

[159]  J. Kowalski,et al.  HMGA1 overexpression correlates with relapse in childhood B-lineage acute lymphoblastic leukemia , 2013, Leukemia & lymphoma.

[160]  N. Heisterkamp,et al.  Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy. , 2013, Blood.

[161]  S. Fröhling,et al.  CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARγ signaling. , 2013, The Journal of clinical investigation.

[162]  J. Waldron,et al.  Lin28b Promotes Head and Neck Cancer Progression via Modulation of the Insulin-Like Growth Factor Survival Pathway , 2012, Oncotarget.

[163]  Elias T. Zambidis,et al.  HMGA1 Reprograms Somatic Cells into Pluripotent Stem Cells by Inducing Stem Cell Transcriptional Networks , 2012, PloS one.

[164]  Sarah Filippi,et al.  Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21 , 2012, Proceedings of the National Academy of Sciences.

[165]  R. Stallings,et al.  LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression , 2012, Nature Genetics.

[166]  E. Tholouli,et al.  Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia. , 2012, Biochemical and biophysical research communications.

[167]  S. Muljo,et al.  Lin28b Reprograms Adult Bone Marrow Hematopoietic Progenitors to Mediate Fetal-Like Lymphopoiesis , 2012, Science.

[168]  N. Aghaeepour,et al.  Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. , 2012, Cell stem cell.

[169]  J. Crispino,et al.  Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. , 2012, The Journal of clinical investigation.

[170]  A. Hero,et al.  Identification and characterization of Hoxa9 binding sites in hematopoietic cells. , 2012, Blood.

[171]  A. Iwama,et al.  Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. , 2011, Blood.

[172]  J. Berg,et al.  Dnmt3a is essential for hematopoietic stem cell differentiation , 2011, Nature Genetics.

[173]  Richard A. Anderson,et al.  Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region , 2011, The Lancet.

[174]  Hua Zhang,et al.  Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia , 2011, Molecular Cancer.

[175]  Yupo Ma,et al.  SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. , 2011, Blood.

[176]  Lars Bullinger,et al.  MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. , 2011, Cancer cell.

[177]  I. Lossos,et al.  LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome , 2011, Haematologica.

[178]  C. Croce,et al.  Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation , 2011, Proceedings of the National Academy of Sciences.

[179]  Ha-won Jeong,et al.  SALL4, a Stem Cell Factor, Affects the Side Population by Regulation of the ATP-Binding Cassette Drug Transport Genes , 2011, PloS one.

[180]  L. Griškevičius,et al.  Identification of characteristic IGF2BP expression patterns in distinct B-ALL entities. , 2011, Blood cells, molecules & diseases.

[181]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[182]  Raja Jothi,et al.  GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. , 2011, Blood.

[183]  Kevin K Dobbin,et al.  Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. , 2010, Blood.

[184]  Debashis Sahoo,et al.  MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets , 2010, Proceedings of the National Academy of Sciences.

[185]  Aadel A. Chaudhuri,et al.  MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output , 2010, Proceedings of the National Academy of Sciences.

[186]  R. Stam,et al.  Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. , 2010, Blood.

[187]  S. Orkin,et al.  miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. , 2010, Genes & development.

[188]  G. Daley,et al.  Lin28: A MicroRNA Regulator with a Macro Role , 2010, Cell.

[189]  A. Zorn,et al.  Interactions between SOX factors and Wnt/β‐catenin signaling in development and disease , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[190]  G. Scambia,et al.  Targeting CD133 antigen in cancer , 2009, Expert opinion on therapeutic targets.

[191]  John T. Powers,et al.  Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies , 2009, Nature Genetics.

[192]  C. Lengerke,et al.  Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. , 2009, Blood.

[193]  P. Kearns,et al.  Expression of CD133 on leukemia-initiating cells in childhood ALL. , 2009, Blood.

[194]  J. Rowley,et al.  Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. , 2009, Blood.

[195]  G. Hannon,et al.  Ezh2 Orchestrates Gene Expression for the Stepwise Differentiation of Tissue-Specific Stem Cells , 2009, Cell.

[196]  Tina N. Davis,et al.  HOXA9 is required for survival in human MLL-rearranged acute leukemias. , 2009, Blood.

[197]  Howard Y. Chang,et al.  Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. , 2009, Cell stem cell.

[198]  W. Evans,et al.  A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. , 2009, The Lancet. Oncology.

[199]  M. D. Boer,et al.  Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia , 2009, Leukemia.

[200]  J. Dick,et al.  Stem cell concepts renew cancer research. , 2008, Blood.

[201]  M. Weiss,et al.  Trisomy 21 enhances human fetal erythro-megakaryocytic development. , 2008, Blood.

[202]  J. Zucman‐Rossi,et al.  Prognostic Significance of SALL4 Expression Levels in Paediatric Acute Myeloid Leukaemia (AML). , 2008 .

[203]  J. Gómez-Skarmeta,et al.  A dual requirement for Iroquois genes during Xenopus kidney development , 2008, Development.

[204]  L. Fink,et al.  SALL4 is a key regulator of survival and apoptosis in human leukemic cells. , 2008, Blood.

[205]  L. Smirnova,et al.  A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment , 2008, Nature Cell Biology.

[206]  G. Daley,et al.  Modulation of murine embryonic stem cell-derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. , 2008, Blood.

[207]  T. Enver,et al.  Initiating and Cancer-Propagating Cells in TEL-AML1-Associated Childhood Leukemia , 2008, Science.

[208]  T. Golub,et al.  MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia , 2007, Proceedings of the National Academy of Sciences.

[209]  M. Cleary,et al.  Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. , 2007, Genes & development.

[210]  E. Bruford,et al.  Classification and nomenclature of all human homeobox genes , 2007, BMC Biology.

[211]  S. Karlsson,et al.  Hoxa9/hoxb3/hoxb4 compound null mice display severe hematopoietic defects. , 2007, Experimental hematology.

[212]  S. Morrison,et al.  Sox17 Dependence Distinguishes the Transcriptional Regulation of Fetal from Adult Hematopoietic Stem Cells , 2007, Cell.

[213]  P. Dröge,et al.  DNA architectural factor and proto‐oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells , 2007, FEBS letters.

[214]  S. Fröhling,et al.  The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. , 2007, The Journal of clinical investigation.

[215]  M. Lübbert,et al.  Leukemia targeting ligands isolated from phage display peptide libraries , 2007, Leukemia.

[216]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[217]  D. Kent,et al.  Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. , 2006, The Journal of clinical investigation.

[218]  J. Dick,et al.  Targeting of CD44 eradicates human acute myeloid leukemic stem cells , 2006, Nature Medicine.

[219]  Li Chai,et al.  Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1 , 2006, Nature Cell Biology.

[220]  C. Croce,et al.  CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control , 2006, Proceedings of the National Academy of Sciences.

[221]  J. Hess,et al.  Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. , 2005, Cancer research.

[222]  Matthew Meyerson,et al.  The Menin Tumor Suppressor Protein Is an Essential Oncogenic Cofactor for MLL-Associated Leukemogenesis , 2005, Cell.

[223]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[224]  J. Dick,et al.  Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity , 2004, Nature Immunology.

[225]  W. Hiddemann,et al.  Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[226]  Cameron S. Osborne,et al.  LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1 , 2003, Science.

[227]  A. Fusco,et al.  Loss of Hmga1 gene function affects embryonic stem cell lymphohematopoietic differentiation , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[228]  S. Orkin,et al.  Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene , 2003, Nature.

[229]  Thomas A Milne,et al.  MLL targets SET domain methyltransferase activity to Hox gene promoters. , 2002, Molecular cell.

[230]  E. Coccia,et al.  Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. , 2002, Blood.

[231]  Elaine Dzierzak,et al.  Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. , 2002, Immunity.

[232]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[233]  A. Baron,et al.  Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia , 2002, Leukemia.

[234]  C. Holding,et al.  Human embryonic genes re-expressed in cancer cells , 2001, Oncogene.

[235]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[236]  J. Palis,et al.  Yolk-sac hematopoiesis: the first blood cells of mouse and man. , 2001, Experimental hematology.

[237]  J. Taipale,et al.  The Hedgehog and Wnt signalling pathways in cancer , 2001, Nature.

[238]  K. Shannon,et al.  Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. , 2000, Blood.

[239]  H. Hasle,et al.  Risks of leukaemia and solid tumours in individuals with Down's syndrome , 2000, The Lancet.

[240]  C. Eaves,et al.  Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. , 1999, Experimental hematology.

[241]  J. Goldman,et al.  Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). , 1999, Blood.

[242]  N. M. Brooke,et al.  The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster , 1998, Nature.

[243]  T. Rabbitts,et al.  The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[244]  R. Warnke,et al.  A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. , 1997, Blood.

[245]  J. Kearney,et al.  AC133, a novel marker for human hematopoietic stem and progenitor cells. , 1997, Blood.

[246]  W. Huttner,et al.  Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[247]  I. Lemischka,et al.  Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. , 1997, Experimental hematology.

[248]  L. Humeau,et al.  Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. , 1996, Blood.

[249]  J. Cupp,et al.  Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. , 1994, Blood.

[250]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[251]  P. Lansdorp,et al.  Ontogeny-related changes in proliferative potential of human hematopoietic cells , 1993, The Journal of experimental medicine.

[252]  M. Shokrgozar,et al.  Development of high-affinity monoclonal antibody using CD44 overexpressed cells as a candidate for targeted immunotherapy and diagnosis of acute myeloid leukemia. , 2017, Human antibodies.

[253]  S. Armstrong,et al.  Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia. , 2016, Cancer discovery.

[254]  E. Olhava,et al.  Metabolism and disposition of the DOT1L inhibitor, pinometostat (EPZ-5676), in rat, dog and human , 2015, Cancer Chemotherapy and Pharmacology.

[255]  P. Holland,et al.  Evolution of homeobox genes , 2013, Wiley interdisciplinary reviews. Developmental biology.

[256]  E. Hoster,et al.  The homeobox gene CDX2 is aberrantly expressed and associated with an inferior prognosis in patients with acute lymphoblastic leukemia , 2009, Leukemia.

[257]  W. Hiddemann,et al.  Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia. , 2008, Blood.

[258]  K. Coombes,et al.  HOX expression patterns identify a common signature for favorable AML , 2008, Leukemia.

[259]  B. Péault,et al.  Embryonic development of the human hematopoietic system. , 2005, The International journal of developmental biology.

[260]  M. Greaves In utero origins of childhood leukaemia. , 2005, Early human development.