Hénon mappings in the complex domain I: The global topology of dynamical space
暂无分享,去创建一个
[1] J. Smillie,et al. Polynomial diffeomorphisms of ². II. Stable manifolds and recurrence , 1991 .
[2] H. Brolin. Invariant sets under iteration of rational functions , 1965 .
[3] John H. Hubbard,et al. Hénon Mappings in the Complex Domain , 1995 .
[4] James Eells,et al. A fibre bundle description of Teichmüller theory , 1969 .
[5] J. Milnor. Non-expansive Hénon maps , 1988 .
[6] P. Holmes. Bifurcation sequences in horseshoe maps: infinitely many routes to chaos , 1984 .
[7] M. Hénon. Numerical study of quadratic area-preserving mappings , 1969 .
[8] L. Vietoris. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .
[9] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[10] Ralph W. Oberste-Vorth,et al. Henon mappings in the complex domain II: projective and inductive limits of polynomials , 1994 .
[11] M. Hamstrom,et al. Homotopy groups of the space of homeomorphisms on a $2$-manifold , 1966 .
[12] J. Hubbard. Local connectivity of Julia sets and bifurcation loci: three theorems of J , 1993 .
[13] J. Smillie,et al. Polynomial diffeomorphisms of C2. III: Ergodicity, exponents and entropy of the equilibrium measure , 1992 .
[14] D. Dantzig. Ueber topologisch homogene Kontinua , 2022 .
[15] Bodil Branner,et al. The iteration of cubic polynomials Part II: patterns and parapatterns , 1992 .
[16] Philip Holmes,et al. Bifurcations of one- and two-dimensional maps , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[17] J. Smillie. The entropy of polynomial diffeomorphisms of C2 , 1990, Ergodic Theory and Dynamical Systems.
[18] John Erik Fornæss,et al. Complex Hénon mappings in $\mathbb{C}^2$ and Fatou-Bieberbach domains , 1992 .
[19] Lennart Carleson,et al. The Dynamics of the Henon Map , 1991 .
[20] Shmuel Friedland,et al. Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.
[21] J. M. Thomas,et al. Conformal Invariants. , 1926, Proceedings of the National Academy of Sciences of the United States of America.
[22] R. F. Williams. One-dimensional non-wandering sets , 1967 .
[23] Eric Bedford,et al. Polynomial diffeomorphisms of C2: currents, equilibrium measure and hyperbolicity , 1991 .
[24] Philip Holmes,et al. Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences , 1985 .
[25] Polynomial diffeomorphisms ofC2. IV: The measure of maximal entropy and laminar currents , 1992, math/9205210.
[26] J. Hubbard. THE HENON MAPPING IN THE COMPLEX DOMAIN , 1986 .
[27] A. Dold. Fixed point index and fixed point theorem for Euclidean neighborhood retracts , 1965 .
[28] Marcelo Viana,et al. Abundance of strange attractors , 1993 .