Hénon mappings in the complex domain I: The global topology of dynamical space

© Publications mathématiques de l’I.H.É.S., 1994, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[1]  J. Smillie,et al.  Polynomial diffeomorphisms of ². II. Stable manifolds and recurrence , 1991 .

[2]  H. Brolin Invariant sets under iteration of rational functions , 1965 .

[3]  John H. Hubbard,et al.  Hénon Mappings in the Complex Domain , 1995 .

[4]  James Eells,et al.  A fibre bundle description of Teichmüller theory , 1969 .

[5]  J. Milnor Non-expansive Hénon maps , 1988 .

[6]  P. Holmes Bifurcation sequences in horseshoe maps: infinitely many routes to chaos , 1984 .

[7]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[8]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .

[9]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[10]  Ralph W. Oberste-Vorth,et al.  Henon mappings in the complex domain II: projective and inductive limits of polynomials , 1994 .

[11]  M. Hamstrom,et al.  Homotopy groups of the space of homeomorphisms on a $2$-manifold , 1966 .

[12]  J. Hubbard Local connectivity of Julia sets and bifurcation loci: three theorems of J , 1993 .

[13]  J. Smillie,et al.  Polynomial diffeomorphisms of C2. III: Ergodicity, exponents and entropy of the equilibrium measure , 1992 .

[14]  D. Dantzig Ueber topologisch homogene Kontinua , 2022 .

[15]  Bodil Branner,et al.  The iteration of cubic polynomials Part II: patterns and parapatterns , 1992 .

[16]  Philip Holmes,et al.  Bifurcations of one- and two-dimensional maps , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  J. Smillie The entropy of polynomial diffeomorphisms of C2 , 1990, Ergodic Theory and Dynamical Systems.

[18]  John Erik Fornæss,et al.  Complex Hénon mappings in $\mathbb{C}^2$ and Fatou-Bieberbach domains , 1992 .

[19]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[20]  Shmuel Friedland,et al.  Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.

[21]  J. M. Thomas,et al.  Conformal Invariants. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. F. Williams One-dimensional non-wandering sets , 1967 .

[23]  Eric Bedford,et al.  Polynomial diffeomorphisms of C2: currents, equilibrium measure and hyperbolicity , 1991 .

[24]  Philip Holmes,et al.  Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences , 1985 .

[25]  Polynomial diffeomorphisms ofC2. IV: The measure of maximal entropy and laminar currents , 1992, math/9205210.

[26]  J. Hubbard THE HENON MAPPING IN THE COMPLEX DOMAIN , 1986 .

[27]  A. Dold Fixed point index and fixed point theorem for Euclidean neighborhood retracts , 1965 .

[28]  Marcelo Viana,et al.  Abundance of strange attractors , 1993 .