Facile Route to Inkjet Printed Carbon Nanotube-Based Inverters with High Gain for Biosignal Monitoring

[1]  A. Franklin,et al.  Carbon nanotube transistors: Making electronics from molecules , 2022, Science.

[2]  S. Cha,et al.  Shift of switching threshold in low-dimensional semiconductor-based complementary inverters via inkjet printing , 2022, Nanotechnology.

[3]  M. Lanza,et al.  Inkjet Printed Circuits with 2D Semiconductor Inks for High‐Performance Electronics , 2021, Advanced Electronic Materials.

[4]  Seunghyuk Lee,et al.  Topological comparison of unipolar and complementary digital inverter circuits , 2021 .

[5]  S. Singh,et al.  Flexible inkjet-printed dual-gate organic thin film transistors and PMOS inverters: Noise margin control by top gate , 2020 .

[6]  Bongjun Kim Inkjet‐Printed Ternary Inverter Circuits with Tunable Middle Logic Voltages , 2020, Advanced Electronic Materials.

[7]  Z. Cui,et al.  Air-stable N-type printed carbon nanotube thin film transistors for CMOS logic circuits , 2020, Carbon.

[8]  Bongjun Kim Inkjet‐Printed Indium Oxide/Carbon Nanotube Heterojunctions for Gate‐Tunable Diodes , 2019, Advanced Electronic Materials.

[9]  Arokia Nathan,et al.  Printed subthreshold organic transistors operating at high gain and ultralow power , 2019, Science.

[10]  S. Cha,et al.  Complementary inverters based on low-dimensional semiconductors prepared by facile and fully scalable methods , 2019, 2D Materials.

[11]  M. Hersam,et al.  Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors. , 2019, ACS applied materials & interfaces.

[12]  Takhee Lee,et al.  Recent Progress in Inkjet‐Printed Thin‐Film Transistors , 2019, Advanced science.

[13]  K. Cho,et al.  Three-dimensional monolithic integration in flexible printed organic transistors , 2019, Nature Communications.

[14]  Sungyeon Kim,et al.  Organic Vapor‐Jet Printing with Reduced Heat Transfer for Fabrication of Flexible Organic Devices , 2018, Advanced Materials Technologies.

[15]  Duncan N. Johnstone,et al.  Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks , 2016, ACS nano.

[16]  Jianwen Zhao,et al.  Flexible CMOS-Like Circuits Based on Printed P-Type and N-Type Carbon Nanotube Thin-Film Transistors. , 2016, Small.

[17]  Zhibin Yu,et al.  Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes , 2015 .

[18]  Bruce E. Kahn,et al.  Patterning Processes for Flexible Electronics , 2015, Proceedings of the IEEE.

[19]  J. Choi,et al.  Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors. , 2015, Physical chemistry chemical physics : PCCP.

[20]  Jianwen Zhao,et al.  Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. , 2014, Nanoscale.

[21]  Yu Cao,et al.  Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors , 2014, Nature Communications.

[22]  Ananth Dodabalapur,et al.  High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. , 2014, Nano letters.

[23]  A. Sarkar,et al.  Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates , 2013, Nanomaterials.

[24]  Wei Zhang,et al.  Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. , 2013, Nano letters.

[25]  A. Busnaina,et al.  A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter , 2012, Nanotechnology.

[26]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[27]  Young Hee Lee,et al.  Graphene Versus Carbon Nanotubes in Electronic Devices , 2011 .

[28]  Ryan E. Brock,et al.  Electronically Monodisperse Single‐Walled Carbon Nanotube Thin Films as Transparent Conducting Anodes in Organic Photovoltaic Devices , 2011 .

[29]  P. Burke,et al.  Fundamental Limits on the Mobility of Nanotube‐Based Semiconducting Inks , 2011, Advanced materials.

[30]  Chongwu Zhou,et al.  Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. , 2010, ACS nano.

[31]  Yasumitsu Miyata,et al.  Tunable Carbon Nanotube Thin‐Film Transistors Produced Exclusively via Inkjet Printing , 2010, Advanced materials.

[32]  A. Behnam,et al.  Optimizing transistor performance of percolating carbon nanotube networks , 2010, 1004.4009.

[33]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[34]  Chongwu Zhou,et al.  Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. , 2009, Nano letters.

[35]  J. Kenny,et al.  Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules , 2006 .

[36]  Byung-Gook Park,et al.  Full-swing pentacene organic inverter with enhancement-mode driver and depletion-mode load , 2006 .

[37]  V. Derycke,et al.  Chemical optimization of self-assembled carbon nanotube transistors. , 2005, Nano letters.

[38]  Fotios Papadimitrakopoulos,et al.  A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[39]  Kenneth A. Smith,et al.  Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates , 1999 .