Proteolytic cleavage of chemokines by Trypanosoma cruzi's cruzipain inhibits chemokine functions by promoting the generation of antagonists.

[1]  J. Scharfstein,et al.  Proteolytic generation of kinins in tissues infected by Trypanosoma cruzi depends on CXC chemokine secretion by macrophages activated via Toll‐like 2 receptors , 2009, Journal of leukocyte biology.

[2]  M. Corti,et al.  Reactivation of Chagas disease with central nervous system involvement in HIV-infected patients in Argentina, 1992-2007. , 2008, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[3]  C. Overall,et al.  Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. , 2008, Blood.

[4]  Maria Elena Bottazzi,et al.  The Neglected Tropical Diseases of Latin America and the Caribbean: A Review of Disease Burden and Distribution and a Roadmap for Control and Elimination , 2008, PLoS neglected tropical diseases.

[5]  L. Bixby,et al.  Stable CD8+ T Cell Memory during Persistent Trypanosoma cruzi Infection1 , 2008, The Journal of Immunology.

[6]  J. Scharfstein,et al.  Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway , 2008, Biological chemistry.

[7]  Christopher M. Overall,et al.  Matrix Metalloproteinase Processing of CXCL11/I-TAC Results in Loss of Chemoattractant Activity and Altered Glycosaminoglycan Binding* , 2008, Journal of Biological Chemistry.

[8]  C. González-Bonilla,et al.  CDIP‐2, a synthetic peptide derived from chemokine (C‐C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation , 2008, Clinical and experimental immunology.

[9]  M. Nagao,et al.  Neutrophil Proteases Activate Eosinophil Function in vitro , 2008, International Archives of Allergy and Immunology.

[10]  H. Griffiths,et al.  Gingipains from Porphyromonas gingivalis Increase the Chemotactic and Respiratory Burst-Priming Properties of the 77-Amino-Acid Interleukin-8 Variant , 2007, Infection and Immunity.

[11]  L. Van Kaer,et al.  Toll‐like receptor 4 (TLR4)‐dependent proinflammatory and immunomodulatory properties of the glycoinositolphospholipid (GIPL) from Trypanosoma cruzi , 2007, Journal of leukocyte biology.

[12]  M. Lopes,et al.  Decoding caspase signaling in host immunity to the protozoan Trypanosoma cruzi. , 2007, Trends in immunology.

[13]  B. Maciel,et al.  Pathogenesis of Chronic Chagas Heart Disease , 2007, Circulation.

[14]  O. Bottasso,et al.  Cytokines and cell adhesion receptors in the regulation of immunity to Trypanosoma cruzi. , 2007, Cytokine & growth factor reviews.

[15]  P. Proost,et al.  Natural post-translational modifications of chemokines. , 2006, Biochemical Society transactions.

[16]  Á. Moncayo,et al.  An update on Chagas disease (human American trypanosomiasis) , 2006, Annals of tropical medicine and parasitology.

[17]  A. Sher,et al.  Cutting Edge: TLR9 and TLR2 Signaling Together Account for MyD88-Dependent Control of Parasitemia in Trypanosoma cruzi Infection1 , 2006, The Journal of Immunology.

[18]  E. Butcher,et al.  Chemoattractants, extracellular proteases, and the integrated host defense response. , 2006, Experimental hematology.

[19]  C. Rudack,et al.  Induction of CXC chemokines in A549 airway epithelial cells by trypsin and staphylococcal proteases − a possible route for neutrophilic inflammation in chronic rhinosinusitis , 2006, Clinical and experimental immunology.

[20]  A. Satoskar,et al.  Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection , 2006, Infection and Immunity.

[21]  P. Loke,et al.  Proteases in parasitic diseases. , 2006, Annual review of pathology.

[22]  N. Andrews,et al.  The Trypanosoma cruzi–host-cell interplay: location, invasion, retention , 2005, Nature Reviews Microbiology.

[23]  J. Sidney,et al.  Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients. , 2005, Microbes and infection.

[24]  R. Tarleton,et al.  Antigen-Specific T Cells Maintain an Effector Memory Phenotype during Persistent Trypanosoma cruzi Infection1 , 2005, The Journal of Immunology.

[25]  R. Cano,et al.  Immune response to a major Trypanosoma cruzi antigen, cruzipain, is differentially modulated in C57BL/6 and BALB/c mice. , 2004, Microbes and infection.

[26]  B. Levine,et al.  Reactivation of cardiac Chagas' disease in acquired immune deficiency syndrome. , 2004, The American journal of cardiology.

[27]  R. Tarleton,et al.  Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection , 2004, Immunological reviews.

[28]  J. Scharfstein,et al.  A New Cruzipain-Mediated Pathway of Human Cell Invasion by Trypanosoma cruzi Requires Trypomastigote Membranes , 2004, Infection and Immunity.

[29]  R. Gazzinelli,et al.  Trypanosoma cruzi and its components as exogenous mediators of inflammation recognized through Toll-like receptors. , 2004, Mediators of inflammation.

[30]  E. García-Zepeda,et al.  Entamoeba histolytica cysteine protease 2 (EhCP2) modulates leucocyte migration by proteolytic cleavage of chemokines , 2004, Parasite immunology.

[31]  E. Wanke,et al.  Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[32]  O. Coso,et al.  Arginase induction promotes Trypanosoma cruzi intracellular replication in Cruzipain‐treated J774 cells through the activation of multiple signaling pathways , 2004, European journal of immunology.

[33]  C. Overall,et al.  HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration , 2003, Nature Neuroscience.

[34]  R. Tarleton Chagas disease: a role for autoimmunity? , 2003, Trends in parasitology.

[35]  S. Husson,et al.  Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. , 2003, European journal of biochemistry.

[36]  J. Cazzulo,et al.  Specific cleavage sites on human IgG subclasses by cruzipain, the major cysteine proteinase from Trypanosoma cruzi. , 2003, Molecular and biochemical parasitology.

[37]  T. Nakaki,et al.  Identification of interleukin-8 converting enzyme as cathepsin L. , 2003, Biochimica et biophysica acta.

[38]  G. Denning,et al.  Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. , 2003, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[39]  J. Silva,et al.  The role of nitric oxide in the pathogenesis of Chagas disease. , 2003, Frontiers in bioscience : a journal and virtual library.

[40]  S. Gea,et al.  Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen , 2002, Journal of leukocyte biology.

[41]  J. Wallace,et al.  Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. , 2002, Blood.

[42]  C. Brodskyn,et al.  Glycoinositolphospholipids from Trypanosoma cruzi Interfere with Macrophages and Dendritic Cell Responses , 2002, Infection and Immunity.

[43]  B. Lindner,et al.  Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I‐TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine , 2002, Journal of leukocyte biology.

[44]  J. Scharfstein,et al.  Induction of B- and T-cell responses to cruzipain in the murine model of Trypanosoma cruzi infection. , 2002, Microbes and infection.

[45]  J. Carrero,et al.  How protozoan parasites evade the immune response. , 2002, Trends in parasitology.

[46]  R. Gazzinelli,et al.  Chemokines, inflammation and Trypanosoma cruzi infection. , 2002, Trends in parasitology.

[47]  P. Olliaro,et al.  Developments in the treatment of leishmaniasis and trypanosomiasis , 2002, Expert opinion on emerging drugs.

[48]  S. Gea,et al.  Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite , 2002, European journal of immunology.

[49]  J. Urbina Chemotherapy of Chagas disease. , 2002, Current pharmaceutical design.

[50]  K. Willms,et al.  Ultrastructural damage of Trypanosoma cruzi epimastigotes exposed to decomplemented immune sera , 2001, Parasitology Research.

[51]  Inge Nelissen,et al.  Gelatinase B functions as regulator and effector in leukocyte biology , 2001, Journal of leukocyte biology.

[52]  R. Ménard,et al.  Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. , 2001, Molecular and biochemical parasitology.

[53]  D. Pritchard,et al.  Eotaxin Is Specifically Cleaved by Hookworm Metalloproteases Preventing Its Action In Vitro and In Vivo1 , 2000, The Journal of Immunology.

[54]  J. Scharfstein,et al.  Host Cell Invasion by TRYPANOSOMA cRUZI Is Potentiated by Activation of Bradykinin B2 Receptors , 2000, The Journal of experimental medicine.

[55]  P. E. Van den Steen,et al.  Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. , 2000, Blood.

[56]  C. Overall,et al.  Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. , 2000, Science.

[57]  F. Kierszenbaum Chagas’ Disease and the Autoimmunity Hypothesis , 1999, Clinical Microbiology Reviews.

[58]  W. Hou,et al.  Activity staining of pectinesterase on polyacrylamide gels after acidic or sodium dodecyl sulfate electrophoresis , 1998, Electrophoresis.

[59]  J. Scharfstein,et al.  Kininogenase Activity by the Major Cysteinyl Proteinase (Cruzipain) from Trypanosoma cruzi * , 1997, The Journal of Biological Chemistry.

[60]  A. Luster,et al.  Murine Monocyte Chemoattractant Protein (MCP)-5: A Novel CC Chemokine That Is a Structural and Functional Homologue of Human MCP-1 , 1997, The Journal of experimental medicine.

[61]  Q. Hamid,et al.  Human monocyte chemoattractant protein (MCP)-4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the CC chemokine receptors (CCR)-2 and -3. , 1996, Journal of immunology.

[62]  U. Hellman,et al.  Hydrolysis of synthetic peptides by cruzipain, the major cysteine proteinase from Trypanosoma cruzi, provides evidence for self-processing and the possibility of more specific substrates for the enzyme. , 1996, Cellular and Molecular Biology.

[63]  P. Leder,et al.  Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia , 1996, Nature Medicine.

[64]  J. Scharfstein,et al.  Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, through the use of cystatin-derived substrates and inhibitors. , 1996, The Biochemical journal.

[65]  M. Baggiolini,et al.  Interleukin‐8 processing by neutrophil elastase, cathepsin G and proteinase‐3 , 1994, FEBS letters.

[66]  M. Nathanson,et al.  Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients , 1994, The Journal of experimental medicine.

[67]  A. Frasch,et al.  The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is antigenic in human infections , 1991, Infection and immunity.

[68]  E. Bontempi,et al.  Digestion of human immunoglobulin G by the major cysteine proteinase (cruzipain) from Trypanosoma cruzi , 1990 .

[69]  W. de Souza,et al.  Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. , 1990, Journal of cell science.

[70]  P. A. López,et al.  Mecanismos de resistencia innata y adquirida al trypanosoma cruzi , 1989 .

[71]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[72]  M. Fresno,et al.  Trypanosoma cruzi-induced molecular mimicry and Chagas' disease. , 2005, Current topics in microbiology and immunology.

[73]  J. Cazzulo,et al.  Purification of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi by affinity chromatography. , 1993, Biological research.

[74]  T. Kipnis,et al.  Evasion of Trypanosoma cruzi from complement lysis. , 1989, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.