Probing the electronic communication of linear heptanickel and nonanickel string complexes by utilizing two redox-active [Ni2(napy)4]3+ moieties.

Two extended nickel string complexes, [Ni(7)(bnapy)(4)Cl(2)](Cl)(2) (2) and [Ni(9)(bnapya)(4)Cl(2)](PF(6))(2) (3) (bnapy(2-) = 2,6-bis(1,8-naphthyridylamido)pyridine and bnapya(3-) = bis(6-(1,8-naphthyridylamido)pyridyl)amido), which possess two redox-active [Ni(2)(napy)(4)](3+) units, were synthesized and characterized. The electronic communication between the two redox-active units in both complexes can be investigated not only by magnetic measurements but also by analyzing the difference between two consecutive one-electron oxidation peaks (DeltaE(1/2)) of 2 and 3. The antiferromagnetic coupling between the two [Ni(2)(napy)(4)](3+) fragments become weaker as the metal frameworks are elongated (J = -13.21 and -1.48 cm(-1) for 2 and 3, respectively). Moreover, the DeltaE(1/2) values of 2 and 3 are 110 and 84 mV, respectively, which are smaller than that (300 mV) of their pentanickel analogue [Ni(5)(bna)(4)(Cl)(2)](PF(6))(2) (bna(-) = bisnaphthyridylamido) (1). These DeltaE(1/2) values indicate that the electronic communication decreases with increasing number of inner diamagnetic nickel ions in nickel string complexes.

[1]  P. Fanwick,et al.  Dimer of Diruthenium Compound Bridged by 1,1′-Diethynylferrocene: Ferrocene as a Weak Mediator for Electronic Coupling , 2009 .

[2]  S. Peng,et al.  Clear evidence of electron delocalization: synthesis, structure, magnetism, EPR and DFT calculation of the asymmetric hexanickel string complex containing a single mixed-valence (Ni(2))(3+) unit. , 2009, Dalton transactions.

[3]  M. Wagner,et al.  Electronic communication in oligonuclear ferrocene complexes with anionic four-coordinate boron bridges. , 2009, Dalton transactions.

[4]  S. Peng,et al.  Asymmetric heterometal string complexes: stereochemical control of the unique isomer of (4,0)[CuCuPd(npa)4Cl][PF6] and (4,0)[CuCuPt(npa)4Cl][PF6]. , 2009, Chemical communications.

[5]  J. Berry,et al.  Do Metal–Metal Multiply‐Bonded “Ligands” Have a trans Influence? Structural and Magnetic Comparisons of Heterometallic CrCr···Co and MoMo···Co Interactions , 2008 .

[6]  S. Peng,et al.  Ru2M(dpa)4Cl2 (M = Cu, Ni): Synthesis, Characterization, and Theoretical Analysis of Asymmetric Heterometal String Complexes of the Dipyridylamide Family , 2008 .

[7]  S. Peng,et al.  A new generation of metal string complexes: structure, magnetism, spectroscopy, theoretical analysis, and single molecular conductance of an unusual mixed-valence linear [Ni5]8+ complex. , 2007, Chemistry.

[8]  S. Peng,et al.  Cu-Pd-Cu and Cu-Pt-Cu linear frameworks: synthesis, magnetic properties, and theoretical analysis of two mixed-metal complexes of dipyridylamide (dpa), isostructural, and isoelectronic with [Cu3(dpa)4Cl2]+. , 2007, Inorganic chemistry.

[9]  J. Berry,et al.  Introducing a metal-metal multiply bonded group as an "axial ligand" to iron: synthetic design of a linear Cr-Cr...Fe framework. , 2007, Journal of the American Chemical Society.

[10]  Shie-Ming Peng,et al.  Conductance and stochastic switching of ligand-supported linear chains of metal atoms. , 2006, Angewandte Chemie.

[11]  E. Bill,et al.  Deliberate synthesis for magnetostructural study of linear tetranuclear complexes BIIIMnIIMnIIBIII, MnIIIMnIIMnIIMnIII, MnIVMnIIMnIIMnIV, FeIIIMnIIMnIIFeIII, and CrIIIMnIIMnIICrIII. Influence of terminal ions on the exchange coupling. , 2006, Inorganic chemistry.

[12]  M. Chisholm,et al.  New metal-organic polygons involving MM quadruple bonds: M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6 (M=Mo, W). , 2005, Inorganic chemistry.

[13]  S. Peng,et al.  Synthesis, structures, magnetism and electrochemical properties of triruthenium-acetylide complexes. , 2005, Dalton transactions.

[14]  M. DeRosa,et al.  Strong electronic couplings between ferrocenyl centers mediated by bis-ethynyl/butadiynyl diruthenium bridges. , 2005, Journal of the American Chemical Society.

[15]  W. Kaim,et al.  Widely Separated Reduction Processes of abpy-Coupled Areneosmium(II) Reaction Centers (abpy = 2,2'-Azobispyridine): Stabilization of the Radical Intermediate and of the Os^0Os^I^I State , 2005 .

[16]  F. Cotton,et al.  Vibrational excitations in single trimetal-molecule transistors. , 2005, Nano letters.

[17]  J. Berry,et al.  A Trinuclear EMAC-Type Molecular Wire with Redox-Active Ferrocenylacetylide “Alligator Clips” Attached , 2004 .

[18]  F. Cotton,et al.  Making connections with molecular wires: extending tri-nickel chains with axial cyanide, dicyanamide, and phenylacetylide ligands , 2003 .

[19]  F. Cotton,et al.  Additional steps toward molecular scale wires: Further study of Ni(5)(10/11+) chains embraced by polypyridylamide ligands. , 2003, Inorganic chemistry.

[20]  J. K. Bera,et al.  Chain compounds based on transition metal backbones: new life for an old topic. , 2002, Angewandte Chemie.

[21]  S. Peng,et al.  One-dimensional metal string complexes , 2000 .

[22]  Frédéric Paul,et al.  Organometallic molecular wires and other nanoscale-sized devices: An approach using the organoiron (dppe)Cp*Fe building block , 1998 .

[23]  Jin-Ming Chen,et al.  Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(II) Complexes: [Ni5(μ5-tpda)4X2] (X = Cl-, CN-, N3-, NCS-) and [Ni5(μ5-tpda)4(CH3CN)2]- (PF6)2 (tpda2- = the Tripyridyldiamido Dianion) , 1998 .

[24]  Shie-Ming Peng,et al.  Linear Pentanuclear Complexes Containing a Chain of Metal Atoms: [Co II5(μ5‐tpda)4(NCS)2] und [Ni II5(μ5‐tpda)4Cl2] , 1997 .

[25]  M. Ward Metal-metal interactions in binuclear complexes exhibiting mixed valency; molecular wires and switches , 1995 .

[26]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[27]  Y. Watabiki,et al.  Weyl anomaly of the product of string vertex functions , 1988 .

[28]  D. Richardson,et al.  Determination of E20-E10 in multistep charge transfer by stationary-electrode pulse and cyclic voltammetry: application to binuclear ruthenium ammines , 1981 .

[29]  V. K. Majestic,et al.  Chemistry of heterocyclic compounds. 61. Synthesis and conformational studies of macrocycles possessing 1,8- or 1,5-naphthyridino subunits connected by carbon-oxygen bridges , 1981 .

[30]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[31]  Paul Adrien Maurice Dirac,et al.  On the Theory of quantum mechanics , 1926 .

[32]  Werner Heisenberg,et al.  Mehrkörperprobleme und Resonanz in der Quantenmechanik. II , 1926 .

[33]  S. Peng,et al.  Effect of Metal−Metal Interactions on Electron Transfer: an STM Study of One-Dimensional Metal String Complexes , 2004 .

[34]  S. Peng,et al.  Metal String Complexes: Synthesis and Crystal Structure of [Ni4(μ4-phdpda)4] and [Ni7(μ7-teptra)4Cl2] (H2phdpda = N-Phenyldipyridyldiamine and H3teptra = Tetrapyridyltriamine) , 1999 .

[35]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[36]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[37]  C. Reichardt,et al.  Synthese 6-substituierter 2-amino-1.8-naphthyridine aus substituierten malonaldehyden , 1977 .