A Robust Method for Edge-Preserving Image Smoothing

Image smoothing is a critical preprocessing step in many image processing tasks. In this paper, a generalized edge-preserving smoothing model is derived from robust statistics theory, and its connections to anisotropic diffusion and bilateral filtering are established. The relationships allow us to derive an improved numerical scheme in the context of a robust estimation process for edge preserving smoothing. Experiments illustrate that the proposed smoothing algorithm is capable of effectively reducing the distracting effects of noise without sacrificing image edge structures. The robust edge-preserving smoothing method performs several dB better in terms of PSNR compared to anisotropic diffusion, bilateral filtering and the Bayes least squares Gaussian scale mixtures a wavelet-based methods for image enhancement.

[1]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Kannappan Palaniappan,et al.  Adaptive Robust Structure Tensors for Orientation Estimation and Image Segmentation , 2005, ISVC.

[3]  Willard L. Miranker Numerical methods of boundary layer type for stiff systems of differential equations , 2005, Computing.

[4]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[6]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[7]  Mila Nikolova,et al.  Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..

[8]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  L. P. I︠A︡roslavskiĭ Digital picture processing : an introduction , 1985 .

[10]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[11]  Scott T. Acton,et al.  On the Convergence of Bilateral Filter for Edge-Preserving Image Smoothing , 2007, IEEE Signal Processing Letters.

[12]  Chang Wen Chen,et al.  Visual Information Representation, Communication, and Image Processing , 1999 .

[13]  Kannappan Palaniappan,et al.  Non-rigid motion estimation using the robust tensor method , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[14]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing , 1985 .

[15]  S. Li Discontinuity-adaptive Mrf Prior and Robust Statistics: a Comparative Study , 1995 .

[16]  Stan Z. Li,et al.  Discontinuous MRF prior and robust statistics: a comparative study , 1995, Image Vis. Comput..

[17]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[18]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[19]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[20]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[21]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[22]  E. Wasserstrom Numerical Solutions by the Continuation Method , 1973 .

[23]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).