A conservative immersed interface method for Large-Eddy Simulation of incompressible flows

We propose a conservative, second-order accurate immersed interface method for representing incompressible fluid flows over complex three dimensional solid obstacles on a staggered Cartesian grid. The method is based on a finite-volume discretization of the incompressible Navier-Stokes equations which is modified locally in cells that are cut by the interface in such a way that accuracy and conservativity are maintained. A level-set technique is used for description and tracking of the interface geometry, so that an extension of the method to moving boundaries and flexible walls is straightforward. Numerical stability is ensured for small cells by a conservative mixing procedure. Discrete conservation and sharp representation of the fluid-solid interface render the method particularly suitable for Large-Eddy Simulations of high-Reynolds number flows. Accuracy, second-order grid convergence and robustness of the method is demonstrated for several test cases: inclined channel flow at Re=20, flow over a square cylinder at Re=100, flow over a circular cylinder at Re=40, Re=100 and Re=3900, as well as turbulent channel flow with periodic constrictions at Re=10,595.

[1]  Nikolaus A. Adams,et al.  Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing , 2007 .

[2]  Jörg Franke,et al.  Large eddy simulation of the flow past a circular cylinder at ReD=3900 , 2002 .

[3]  J. Wallace,et al.  The velocity field of the turbulent very near wake of a circular cylinder , 1996 .

[4]  J. Ferziger,et al.  A ghost-cell immersed boundary method for flow in complex geometry , 2002 .

[5]  H. S. Udaykumar,et al.  Computational Modeling and Analysis of Biomimetic Flight Mechanisms , 2002 .

[6]  W. Rodi,et al.  Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids , 2004 .

[7]  Charles S. Peskin,et al.  Flow patterns around heart valves: a digital computer method for solving the equations of motion , 1973 .

[8]  M. D. Salas,et al.  Euler calculations for multielement airfoils using Cartesian grids , 1986 .

[9]  李幼升,et al.  Ph , 1989 .

[10]  J. Mohd-Yusof,et al.  LES in complex geometries using boundary body forces , 1999 .

[11]  M. Dröge,et al.  Cartesian grid methods for turbulent flow simulation in complex geometries , 2007 .

[12]  Andreas Mark,et al.  Derivation and validation of a novel implicit second-order accurate immersed boundary method , 2008, J. Comput. Phys..

[13]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[14]  R. Mittal,et al.  Flutter, Tumble and Vortex Induced Autorotation , 2002 .

[15]  P. Tucker,et al.  A Cartesian cut cell method for incompressible viscous flow , 2000 .

[16]  R. Henderson Details of the drag curve near the onset of vortex shedding , 1995 .

[17]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[18]  Roel Verstappen,et al.  A new symmetry‐preserving Cartesian‐grid method for computing flow past arbitrarily shaped objects , 2005 .

[19]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[20]  Christoph Rapp,et al.  Experimentelle Studie der turbulenten Strömung über periodische Hügel , 2009 .

[21]  Boyce E. Griffith,et al.  On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems , 2005 .

[22]  R. Bouard,et al.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow , 1977, Journal of Fluid Mechanics.

[23]  Wall Modelling for Implicit Large Eddy Simulation of Favourable and Adverse Pressure Gradient Flows , 2011 .

[24]  Eric Yu Tau A second-order projection method for the incompressible Navier-Stokes equations in arbitrary domains , 1994 .

[25]  Rajat Mittal,et al.  Progress on LES of Flow Past a Circular Cylinder , 1996 .

[26]  D. Hartmann,et al.  An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods , 2008 .

[27]  T. J. Hanratty,et al.  Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500 , 1969, Journal of Fluid Mechanics.

[28]  S. Armfield,et al.  A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid , 2003 .

[29]  Direct and Large-Eddy Simulation II , 1997 .

[30]  A. Thom,et al.  The flow past circular cylinders at low speeds , 1933 .

[31]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[32]  L. Lourenço,et al.  Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder , 1993 .

[33]  M. Chung Cartesian cut cell approach for simulating incompressible flows with rigid bodies of arbitrary shape , 2006 .

[34]  Mark Sussman,et al.  AN EMBEDDED BOUNDARY � VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS IN IRREGULAR GEOMETRIES , 1999 .

[35]  A. Okajima Strouhal numbers of rectangular cylinders , 1982, Journal of Fluid Mechanics.

[36]  R. Verzicco,et al.  Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces , 2000 .

[37]  J. Fröhlich,et al.  Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids, II , 2001 .

[38]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[39]  R. W. Davis,et al.  A numerical study of vortex shedding from rectangles , 1982, Journal of Fluid Mechanics.

[40]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[41]  E. Lamballais,et al.  Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 , 2008 .

[42]  D. Tritton Experiments on the flow past a circular cylinder at low Reynolds numbers , 1959, Journal of Fluid Mechanics.

[43]  B. Wetton,et al.  Analysis of Stiffness in the Immersed Boundary Method and Implications for Time-Stepping Schemes , 1999 .

[44]  Uwe Fey,et al.  A new Strouhal–Reynolds-number relationship for the circular cylinder in the range 47 , 1998 .

[45]  S. Dennis,et al.  Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 , 1970, Journal of Fluid Mechanics.

[46]  Michael Manhart,et al.  High‐order stable interpolations for immersed boundary methods , 2006 .

[47]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[48]  B. Schoenung,et al.  NUMERICAL CALCULATION OF LAMINAR VORTEX-SHEDDING FLOW PAST CYLINDERS , 1990 .

[49]  P. Moin,et al.  Accurate Immersed-Boundary Reconstructions for Viscous Flow Simulations , 2009 .

[50]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[51]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[52]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[53]  W. Shyy,et al.  Elafint: a Mixed Eulerian-Lagrangian Method for Fluid Flows with Complex and Moving Boundaries , 1996 .

[54]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[55]  Lars Davidson,et al.  Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition , 1998 .

[56]  Nikolaus A. Adams,et al.  Implicit LES applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence , 2008 .

[57]  H. S. Udaykumar,et al.  A Sharp Interface Cartesian Grid Methodfor Simulating Flows with ComplexMoving Boundaries , 2001 .

[58]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[59]  Michael Manhart,et al.  Flow over periodic hills – Numerical and experimental study in a wide range of Reynolds numbers , 2009 .

[60]  Nikolaus A. Adams,et al.  Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions , 2008 .

[61]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[62]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[63]  A. S. Grove,et al.  An experimental investigation of the steady separated flow past a circular cylinder , 1964, Journal of Fluid Mechanics.

[64]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .