Genome sequences and evolutionary biology, a two-way interaction.

Complete genome sequences are accumulating rapidly, culminating with the announcement of the human genome sequence in February 2001. In addition to cataloguing the diversity of genes and other sequences, genome sequences will provide the first detailed and complete data on gene families and genome organization, including data on evolutionary changes. Reciprocally, evolutionary biology will make important contributions to the efforts to understand functions of genes and other sequences in genomes. Large-scale, detailed and unbiased comparisons between species will illuminate the evolution of genes and genomes, and population genetics methods will enable detection of functionally important genes or sequences, including sequences that have been involved in adaptive changes.

[1]  D. Lancet,et al.  Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. , 1999, Genomics.

[2]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[3]  M. Nachman,et al.  Estimate of the mutation rate per nucleotide in humans. , 2000, Genetics.

[4]  J. Parsch,et al.  RNA secondary structure and compensatory evolution. , 1999, Genes & genetic systems.

[5]  L. Silver,et al.  Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. , 2000, Genetics.

[6]  T Gojobori,et al.  Large-scale search for genes on which positive selection may operate. , 1996, Molecular biology and evolution.

[7]  M. Nei,et al.  Evolution by the birth-and-death process in multigene families of the vertebrate immune system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Nei,et al.  Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. , 1990, Molecular biology and evolution.

[9]  A. Kondrashov Comparative genomics and evolutionary biology. , 1999, Current opinion in genetics & development.

[10]  Ronald W. Davis,et al.  Genome-Wide Transcriptional Analysis of Aerobic and Anaerobic Chemostat Cultures of Saccharomyces cerevisiae , 1999, Journal of bacteriology.

[11]  Yangrae Cho,et al.  Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. L. Jenkins,et al.  A test for adaptive change in DNA sequences controlling transcription , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  A. Kondrashov Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? , 1995, Journal of theoretical biology.

[14]  L. Duret,et al.  Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B C Meyers,et al.  Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. , 1998, Genome research.

[16]  W. Gilbert,et al.  Intron phase correlations and the evolution of the intron/exon structure of genes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Shabalina,et al.  Pattern of selective constraint in C. elegans and C. briggsae genomes. , 1999, Genetical research.

[18]  M. Delseny,et al.  Extensive Duplication and Reshuffling in the Arabidopsis Genome , 2000, Plant Cell.

[19]  S G Oliver,et al.  Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. , 1999, Genetics.

[20]  P. Keightley,et al.  Deleterious mutations and the evolution of sex. , 2000, Science.

[21]  Chung-I Wu,et al.  A rapidly evolving homeobox at the site of a hybrid sterility gene. , 1998, Science.

[22]  G. D. Wilson,et al.  An SNP map of human chromosome 22 , 2000, Nature.

[23]  D. Hickey,et al.  Concerted evolution within a trypsin gene cluster in Drosophila. , 1999, Molecular biology and evolution.

[24]  M S Boguski,et al.  Human and nematode orthologs--lessons from the analysis of 1800 human genes and the proteome of Caenorhabditis elegans. , 1999, Gene.

[25]  G. McVean,et al.  Neutral evolution of the sex-determining gene transformer in Drosophila. , 2000, Genetics.

[26]  N. Patel,et al.  Evidence for stabilizing selection in a eukaryotic enhancer element , 2000, Nature.

[27]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[28]  M. Boguski,et al.  Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  C. Lewis,et al.  DNA variation in a 5-Mb region of the X chromosome and estimates of sex-specific/type-specific mutation rates. , 1999, American journal of human genetics.

[30]  K. H. Wolfe,et al.  Eukaryote genome duplication - where's the evidence? , 1998, Current opinion in genetics & development.

[31]  M. Long,et al.  Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. , 1999, Gene.

[32]  Jeffrey D. Wall,et al.  Recombination and the power of statistical tests of neutrality , 1999 .

[33]  P. Keightley,et al.  Perspectives Anecdotal , Historical and Critical Commentaries on Genetics , 1999 .

[34]  P. Schulte,et al.  Structural and functional differences in the promoter and 5' flanking region of Ldh-B within and between populations of the teleost Fundulus heteroclitus. , 1997, Genetics.

[35]  Jerzy K. Kulski,et al.  Extensive nucleotide variability within a 370 kb sequence from the central region of the major histocompatibility complex. , 1999, Gene.

[36]  J. Wendel,et al.  Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). , 2000, Genetics.

[37]  Evolutionary inference from genomic data , 1999 .

[38]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[39]  B. Charlesworth,et al.  Sequence variation: Looking for effects of genetic linkage , 1998, Current Biology.

[40]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[41]  M. Long,et al.  Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. , 1993, Science.

[42]  E. Eichler,et al.  Masquerading repeats: paralogous pitfalls of the human genome. , 1998, Genome research.

[43]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[44]  E. Koonin,et al.  The Impact of Comparative Genomics on Our Understanding of Evolution , 2000, Cell.

[45]  J. Eisen Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. , 2000, Current opinion in genetics & development.

[46]  D. Hartl,et al.  Deletion of a conserved regulatory element in the Drosophila Adh gene leads to increased alcohol dehydrogenase activity but also delays development. , 2000, Genetics.

[47]  D J Lipman,et al.  Lineage-specific loss and divergence of functionally linked genes in eukaryotes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[49]  J. Timmis,et al.  Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. , 1998, Molecular biology and evolution.

[50]  W. Martin,et al.  Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[52]  D. G. Brown,et al.  The origins of genomic duplications in Arabidopsis. , 2000, Science.

[53]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[54]  Jody Hey,et al.  The limits of selection during maize domestication , 1999, Nature.

[55]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[56]  Yan P. Yuan,et al.  HGBASE: a database of SNPs and other variations in and around human genes , 2000, Nucleic Acids Res..

[57]  J. Crow,et al.  A molecular approach to estimating the human deleterious mutation rate , 1993, Human mutation.

[58]  D. Tautz,et al.  Large number of replacement polymorphisms in rapidly evolving genes of Drosophila. Implications for genome-wide surveys of DNA polymorphism. , 1999, Genetics.

[59]  R. Hudson,et al.  Adjusting the focus on human variation. , 2000, Trends in genetics : TIG.

[60]  J. B. Walsh,et al.  How often do duplicated genes evolve new functions? , 1995, Genetics.

[61]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[62]  Eugen C. Buehler,et al.  Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana , 1999, Nature.

[63]  A. Wagner,et al.  Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Kenneth H. Wolfe,et al.  Gene Duplication and Gene Conversion in the Caenorhabditis elegans Genome , 1999, Journal of Molecular Evolution.

[65]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[66]  R. Schmidt,et al.  Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. , 2000, The Plant journal : for cell and molecular biology.