Orientationally Ordered Electro-Optic Materials

Suitable materials for processing optical information are critical for implementation of all-optical and electro-optical communications and data processing systems. These technologies require materials with large optical nonlinearities, which certain organic materials have been shown to possess.[1] [2] [3] [4] Guided wave electro-optic systems require not only large optical nonlinearities, but also materials suitable for waveguiding and integration. Material considerations include manufacturability, that is capability of fabrication into reproducible devices; and integrability with sources, electronics, detectors, and interconnects. Additionally, materials should possess favorable dielectric properties: a low dielectric constant and dielectric loss, and the requisite optical quality for producing low-loss optical waveguides.

[1]  Kenneth D. Singer,et al.  Second harmonic generation in poled polymer films , 1986 .

[2]  M. Kawachi,et al.  Organic crystals growth for optical channel waveguides , 1984 .

[3]  W. Tomlinson,et al.  Submicrometer resolution replication of relief patterns for integrated optics , 1974 .

[4]  P K Tien,et al.  Thin organosilicon films for integrated optics. , 1972, Applied optics.

[5]  S. J. Lalama,et al.  Organic Nonlinear Optical Materials , 1985, Other Conferences.

[6]  David J. Williams,et al.  Nonlinear optical properties of organic and polymeric materials , 1983 .

[7]  Toshikuni Kaino Absorption Losses of Low Loss Plastic Optical Fibers , 1985 .

[8]  D. A. Kleinman,et al.  Nonlinear Dielectric Polarization in Optical Media , 1962 .

[9]  R. W. Terhune,et al.  Effects of Dispersion and Focusing on the Production of Optical Harmonics , 1962 .

[10]  Joseph Zyss,et al.  Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units , 1982 .

[11]  N. Takato,et al.  Polymer optical circuits for multimode optical fiber systems. , 1980, Applied optics.

[12]  P. Tien,et al.  Formation of light-guiding interconnections in an integrated optical circuit by composite tapered-film coupling. , 1973, Applied optics.

[13]  Kenneth D. Singer,et al.  Organic Materials for Integrated Optics , 1985, Other Conferences.

[14]  Toshikuni Kaino,et al.  Preparation of plastic optical fibers for near‐IR region transmission , 1987 .

[15]  J. Carruthers,et al.  Thin‐film LiNbO3 electro‐optic light modulator , 1973 .

[16]  S. K. Kurtz,et al.  Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals , 1970 .

[17]  M. Sigelle,et al.  Determination of the electrooptic coefficients of 3‐methyl 4‐nitropyridine 1‐oxide by an interferometric phase‐modulation technique , 1981 .

[18]  Solomon Musikant,et al.  Optical Materials: An Introduction to Selection and Application , 1985 .

[19]  David J. Williams,et al.  Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities , 1984 .

[20]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[21]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[22]  W. Tomlinson,et al.  Photolocking‐A new technique for fabricating optical waveguide circuits , 1974 .