Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach

The core issues of the Austrian energy policy agenda include reducing greenhouse gas (GHG) emissions and dependence on fossil fuels. Within this study, the costs of GHG mitigation and fossil fuel replacement (abatement costs) of established and upcoming bioenergy technologies for heat, electricity and transport fuel production are assessed. Sensitivity analyses and projections up to 2030 illustrate the effect of dynamic parameters on specific abatement costs.

[1]  Sachverständigenrat für Umweltfragen Klimaschutz durch Biomasse. Sondergutachten , 2007 .

[2]  Christoph Walla,et al.  The optimal size for biogas plants , 2008 .

[3]  Leif Gustavsson,et al.  Using biomass for climate change mitigation and oil use reduction , 2007 .

[4]  Mats Söderström,et al.  Biomass gasification in district heating systems - The effect of economic energy policies , 2010 .

[5]  Wim Turkenburg,et al.  Technological learning in bioenergy systems , 2006 .

[6]  F. Maréchal,et al.  Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass , 2009 .

[7]  Kari Sipilä,et al.  Small-scale Biomass CHP Technologies : Situation in Finland, Denmark and Sweden , 2004 .

[8]  André Faaij,et al.  Outlook for advanced biofuels , 2006 .

[9]  S. E. Ireland Energy Prices and Taxes , 2009 .

[10]  I. Obernberger,et al.  Cost assessment of selected decentralised CHP applications based on biomass combustion , 2007 .

[11]  Ethniko Metsovio Polytechneio European energy and transport : trends to 2030 , 2003 .

[12]  Jinyue Yan,et al.  Increasing biomass utilisation in energy systems: a comparative study of CO2 reduction and cost for different bioenergy processing options. , 2004 .

[13]  Bert Metz,et al.  Carbon Dioxide Capture and Storage , 2005 .

[14]  Andreas König Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies , 2011 .

[15]  Johannes Schmidt,et al.  Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies , 2010 .

[16]  Bert Metz,et al.  CARBON DIOXIDE CAPTURE AND STORAGE Intergovernmental Panel on Climate Change Summary for Policymakers and Technical Summary , 2006 .

[17]  William D'haeseleer,et al.  EUSUSTEL - European sustainable electricity comprehensive analysis of future demand and generation of European electricity and its security of supply : WP1,Subtask 1.13d: Country-wise Analysis: Slovenia , 2005 .

[18]  L. Kranzl,et al.  Long-term strategies for an efficient use of domestic biomass resources in Austria , 2010 .

[19]  Adam Hawkes,et al.  EUSUSTEL European Sustainable Electricity Comprehensive Analysis of Future European Demand and Generation of European Electricity and its Security of Supply WP-2: Anticipation of future energy demand Final Report , 2005 .

[20]  Leif Gustavsson,et al.  CO2 mitigation costs of large-scale bioenergy technologies in competitive electricity markets , 2003 .

[21]  Jürgen Karl,et al.  Dezentrale Energiesysteme: Neue Technologien im liberalisierten Energiemarkt , 2006 .