Photometric redshift accuracy in AKARI deep surveys

We investigate the photometric redshift accuracy achievable with the AKARI infrared data in deep multiband surveys, such as in the North Ecliptic Pole field. We demonstrate that the passage of redshifted polycyclic aromatic hydrocarbons (PAH) and silicate features into the mid-infrared wavelength window covered by AKARI is a valuable means to recover the redshifts of starburst galaxies. To this end, we have collected a sample of ∼60 galaxies drawn from the Great Observatories Origins Deep Survey-North Field with spectroscopic redshift 0.5 ≲z_(spec)≲ 1.5 and photometry from 3.6 to 24 μm, provided by the Spitzer, Infrared Space Observatory and AKARI satellites. The infrared spectra are fitted using synthetic galaxy spectral energy distributions which account for starburst and active nuclei emission. For ∼90 per cent of the sources in our sample, the redshift is recovered with an accuracy |z_(phot)−z_(spec)|/(1 +z_(spec)) ≲ 10 per cent. A similar analysis performed on a set of simulated spectra shows that the AKARI infrared data alone can provide photometric redshifts accurate to |z_(phot)−z_(spec)|/(1 +z_(spec)) ∼ 10 per cent (1σ) at z≲ 2 . At higher redshifts, the PAH features are shifted outside the wavelength range covered by AKARI and the photo-z estimates rely on the less prominent 1.6 μm stellar bump; the accuracy achievable in this case on (1 +z) is ∼10–15 per cent, provided that the active galactic nuclei contribution to the infrared emission is subdominant. Our technique is no more prone to redshift aliasing than optical-ultraviolet photo-z, and it may be possible to reduce this aliasing further with the addition of submillimetre and/or radio data.

[1]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[2]  S. Serjeant,et al.  Multi-Wavelength Analysis of 18$\mu $m-Selected Galaxies in the AKARI/Infrared-Camera monitor field towards the North Ecliptic Pole , 2007, 0705.1365.

[3]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[4]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[5]  D. Shupe,et al.  Chandra and Spitzer Unveil Heavily Obscured Quasars in the Chandra/SWIRE Survey , 2006, astro-ph/0602228.

[6]  Cornell,et al.  16 μm Imaging around the Hubble Deep Field-North with the Spitzer IRS , 2005, astro-ph/0507558.

[7]  H. Dole,et al.  DUSTY INFRARED GALAXIES: Sources of the Cosmic Infrared Background , 2005, astro-ph/0507298.

[8]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[9]  C. Pearson,et al.  Silicate‐break galaxies: an efficient selection method for distant ultraluminous infrared galaxies , 2004, astro-ph/0410705.

[10]  R. J. Ivison,et al.  Evidence for Extended, Obscured Starbursts in Submillimeter Galaxies , 2004, astro-ph/0412051.

[11]  T. Takagi,et al.  Present-day scaling relations for submillimetre galaxies: the origin of spheroidal systems , 2004, astro-ph/0405322.

[12]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[13]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[14]  P. Capak,et al.  A Large Sample of Spectroscopic Redshifts in the ACS-GOODS Region of the Hubble Deep Field North , 2004, astro-ph/0401354.

[15]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[16]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[17]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[18]  M. Rowan-Robinson,et al.  Cirrus models for local and high‐z SCUBA galaxies , 2003, astro-ph/0304555.

[19]  A. Bressan,et al.  Spatially-resolved spectrophotometric analysis and modelling of the Superantennae , 2003, astro-ph/0303259.

[20]  T. Takagi,et al.  Evolutionary spectral energy distribution diagnostics of starburst galaxies: signature of bimodality , 2002, astro-ph/0212537.

[21]  Marcin Sawicki,et al.  The 1.6 Micron Bump as a Photometric Redshift Indicator , 2002, astro-ph/0209437.

[22]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[23]  J. Dunlop,et al.  Submillimetre observations of the Hubble Deep Field and Flanking Fields , 2002, astro-ph/0201502.

[24]  Ralf Siebenmorgen,et al.  Massive star formation in galaxies: radiative transfer models of the UV to millimetre emission of starburst galaxies , 2000 .

[25]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 1999, astro-ph/9912048.

[26]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[27]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[28]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, data reduction, and galaxy photometry , 1996, astro-ph/9607174.

[29]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[30]  M. Rowan-Robinson,et al.  Dusty discs in active galactic nuclei , 1995 .

[31]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[32]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[33]  M. Rowan-Robinson,et al.  Interstellar dust galaxies , 1992 .

[34]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .