Operator-valued free multiplicative convolution: analytic subordination theory and applications to random matrix theory

We give an explicit description, via analytic subordination, of free multiplicative convolution of operator-valued distributions. In particular, the subordination function is obtained from an iteration process. This algorithm is easily numerically implementable. We present two concrete applications of our method: the product of two free operator-valued semicircular elements and the calculation of the distribution of $dcd+d^2cd^2$ for scalar-valued $c$ and $d$, which are free. Comparision between the solution obtained by our methods and simulations of random matrices shows excellent agreement.

[1]  Angus E. Taylor Analysis in complex Banach spaces , 1943 .

[2]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[3]  S. Dineen Complex Analysis on Locally Convex Spaces , 2012 .

[4]  D. Voiculescu Symmetries of some reduced free product C*-algebras , 1985 .

[5]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[6]  Alexandru Nica,et al.  Free random variables , 1992 .

[7]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[8]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[9]  D. Shlyakhtenko Random Gaussian band matrices and freeness with amalgamation , 1996 .

[10]  Philippe Biane,et al.  Processes with free increments , 1998 .

[11]  Roland Speicher,et al.  Combinatorial Theory of the Free Product With Amalgamation and Operator-Valued Free Probability Theory , 1998 .

[12]  STABLE LAWS AND DOMAINS OF ATTRACTION IN FREE PROBABILITY THEORY , 1999, math/9905206.

[13]  D. Voiculescu The coalgebra of the free difference quotient and free probability , 2000 .

[14]  Analytic Subordination Consequences of Free Markovianity , 2001, math/0109211.

[15]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[16]  On the S-transform over a Banach algebra , 2005, math/0501083.

[17]  F. Benaych-Georges Rectangular random matrices, related free entropy and free Fisher's information , 2005, math/0512081.

[18]  F. Benaych-Georges,et al.  Rectangular random matrices, related convolution , 2005 .

[19]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[20]  J. William Helton,et al.  Operator-valued Semicircular Elements: Solving A Quadratic Matrix Equation with Positivity Constraints , 2007 .

[21]  S. Belinschi,et al.  A new approach to subordination results in free probability , 2007 .

[22]  Roland Speicher,et al.  On Slow-Fading MIMO Systems With Nonseparable Correlation , 2008, IEEE Transactions on Information Theory.

[23]  Gordon Blower Random Matrices: High Dimensional Phenomena: Contents , 2009 .

[24]  Ion Nechita,et al.  Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon , 2009, 0905.2313.

[25]  S. Belinschi,et al.  Infinite divisibility and a non-commutative Boolean-to-free Bercovici-Pata bijection , 2010, 1007.0058.

[26]  Carlos Vargas,et al.  Free Deterministic Equivalents, Rectangular Random Matrix Models, and Operator-Valued Free Probability Theory , 2011, ArXiv.

[27]  Teodor Banica,et al.  Asymptotic Eigenvalue Distributions of Block-Transposed Wishart Matrices , 2011, 1105.2556.

[28]  Roland Speicher,et al.  Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem , 2013, 1303.3196.