Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

[1]  Dong Ho Kim,et al.  Nickel silicide for Ni/Cu contact mono-silicon solar cells , 2013, Electronic Materials Letters.

[2]  K. Yoshikawa,et al.  High Efficiency Copper Electroplated Heterojunction Solar Cells , 2012 .

[3]  C. Solanki,et al.  A novel two step metallization of Ni/Cu for low concentrator c-Si solar cells , 2010 .

[4]  S. Glunz,et al.  ADVANCED FRONT SIDE METALLIZATION FOR CRYSTALLINE SILICON SOLAR CELLS BASED ON A FULLY PLATED CONTACT , 2010 .

[5]  D. Neuhaus,et al.  Industrial Silicon Wafer Solar Cells , 2007 .

[6]  J. Werner,et al.  30 µm wide contacts on silicon cells by laser transfer , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[7]  S. Glunz,et al.  Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells , 2013 .

[8]  Junsin Yi,et al.  Double screen printed metallization of crystalline silicon solar cells as low as 30 μm metal line width for mass production , 2012 .

[9]  H. Bender,et al.  Nickel silicide contacts formed by excimer laser annealing for high efficiency solar cells , 2013 .

[10]  H. Bender,et al.  Electroless nickel deposition and silicide formation for advanced front side metallization of industrial silicon solar cells , 2012 .

[11]  K. Lee,et al.  Self-aligned Ni-P ohmic contact scheme for silicon solar cells by electroless deposition , 2012, Electronic Materials Letters.

[12]  Formation of a Low Ohmic Contact Nickel Silicide Layer on Textured Silicon Wafers Using Electroless Nickel Plating , 2010 .

[13]  S. M. Sayyah,et al.  Electroplating of copper films on steel substrates from acidic gluconate baths , 2000 .

[14]  Marco Galiazzo,et al.  Double Printing of Front Contact Ag in c-Si Solar Cells , 2010 .

[15]  Loic Tous,et al.  A simple copper metallisation process for high cell efficiencies and reliable modules , 2012 .

[16]  Huihuang Wu,et al.  Direct electroless nickel plating on silicon surface , 2004 .

[17]  O. Luehn,et al.  Adhesive One Step Ni/Ag and Ni/Cu/Ag Inline Direct Plating on Laser Processed Selective Emitter Structures , 2010 .

[18]  S. Lee Cost effective process for high-efficiency solar cells , 2006, 2006 IEEE Nanotechnology Materials and Devices Conference.

[19]  Giso Hahn,et al.  Two Diffusion Step Selective Emitter : Comparison of Mask Opening by Laser or Etching Paste , 2008 .

[20]  Doyeun Kim,et al.  Low-cost contact formation of high-efficiency crystalline silicon solar cells by plating , 2005 .

[21]  Jonas Bartsch,et al.  Laser Chemical Metal Deposition for Silicon Solar Cell Metallization , 2012 .

[22]  E. Ose,et al.  Local structuring of dielectric layers on silicon for improved solar cell metallization , 2007 .

[23]  M. Schlesinger Electroless Deposition of Nickel , 2011 .

[24]  Giso Hahn,et al.  The Origin of Background Plating , 2011 .

[25]  Guy Beaucarne,et al.  Back‐contact solar cells: a review , 2006 .

[26]  I. Teramoto,et al.  Electroless Nickel Plating on Silicon , 1968 .

[27]  C. Voz,et al.  Crystalline silicon solar cells beyond 20% efficiency , 2011, Proceedings of the 8th Spanish Conference on Electron Devices, CDE'2011.

[28]  M. Carmo Transition Metals in Silicon , 1993 .

[29]  R. Preu,et al.  Relevant Pinhole Characterisation Methods for Dielectric Layers for Silicon Solar Cells , 2009 .

[30]  R. Brendel,et al.  18.9 %-Efficient Screen-Printed Solar Cells Applying a Print-on-Print Process , 2011 .

[31]  H. Philipsen,et al.  Large Area Copper Plated Silicon Solar Cell Exceeding 19.5% Efficiency , 2012 .

[32]  DongSeop Kim,et al.  Ni/Cu metallization for low-cost high-efficiency PERC cells , 2002 .

[33]  M. Sailer,et al.  Industrial LCP selective emitter solar cells with plated contacts , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[34]  Peter Fath,et al.  Record Large-Area p-Type CZ Production Cell Efficiency of 19.3% Based on LDSE Technology , 2011, IEEE Journal of Photovoltaics.

[35]  J. Köhler,et al.  Low Temperature Laser Metallization for Silicon Solar Cells , 2011 .

[36]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[37]  Martin A. Green,et al.  Buried contact silicon solar cells , 1994 .

[38]  S. Wenham,et al.  Evolution of metal plating for silicon solar cell metallisation , 2013 .

[39]  K. Ramspeck,et al.  Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology , 2014 .

[40]  Miles V. Sullivan,et al.  Electroless Nickel Plating for Making Ohmic Contacts to Silicon , 1957 .

[41]  B. To,et al.  Review and Understanding of Screen-Printed Contacts and Selective-Emitter Formation: Preprint , 2004 .

[42]  D. Pysch,et al.  Progress in advanced metallization technology at Fraunhofer ISE , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[43]  Wilhelm Warta,et al.  Towards 20% efficient silicon solar cells manufactured at 60 MWp per annum , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[44]  Stefan W. Glunz,et al.  Fine line printed silicon solar cells exceeding 20% efficiency , 2008 .

[45]  S. Nold,et al.  Economic Evaluation of Two-Step Metallization Processes for Silicon Solar Cells , 2011 .

[46]  Nickel Plating on p+ Silicon - A Characterization of Contact Resistivity and Line Resistance , 2012 .

[47]  A. G. Milnes,et al.  Deep impurities in semiconductors , 1973 .

[48]  Gunnar Schubert,et al.  Summary of the Third Workshop on Metallization for Crystalline Silicon Solar Cells , 2012 .

[49]  D. Schroder,et al.  Solar cell contact resistance—A review , 1984, IEEE Transactions on Electron Devices.

[50]  S. Lee,et al.  Investigation of selective emitter in single step diffusion process for plated Ni/Cu metallization crystalline silicon solar cells , 2013 .

[51]  Stefan W. Glunz,et al.  Metal aerosol jet printing for solar cell metallization , 2007 .

[52]  S. Glunz,et al.  LASER-INDUCED NICKEL DEPOSITION FROM AN AQUEOUS ELECTROLYTE FOR THE FRONT-SIDE METALLIZATION OF SILICON SOLAR CELLS , 2008 .

[53]  J. Pak,et al.  Copper metallization for crystalline Si solar cells , 2003 .

[54]  Ralf Preu,et al.  Advances in Electroless Nickel Plating for the Metallization of Silicon Solar Cells Using Different Structuring Techniques for the ARC , 2009 .

[55]  S. Glunz,et al.  Copper as conducting layer in advanced front side metallization processes for crystalline silicon solar cells, exceeding 20% on printed seed layers , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[56]  E. Sleeckx,et al.  Large-area high-efficiency n-type Si rear junction cells featuring laser ablation and Cu-plated front contacts , 2013 .

[57]  R. Vajtai,et al.  Nickel deposition on porous silicon utilizing lasers , 2002 .

[58]  S. H. Lee,et al.  Analysis of front metal contact for plated Ni/Cu silicon solar cell , 2011 .

[59]  Donghwan Kim,et al.  A study on Cu metallization for crystalline Si solar cells , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[60]  C. Ballif,et al.  Heterojunction Solar Cells with Electroplated Ni/Cu Front Electrode , 2013 .

[61]  A. Kaminski,et al.  Electrical and Structural Characterization of Electroless Nickel–Phosphorus Contacts for Silicon Solar Cell Metallization , 2010 .

[62]  A. Mette,et al.  Increasing the Efficiency of Screen-Printed Silicon Solar Cells by Light-Induced Silver Plating , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[63]  Dong Ho Kim,et al.  Investigation on plated Ni/Cu contact for mono-crystalline silicon solar cells , 2013, Electronic Materials Letters.

[64]  P. Jacquet Adhesion of Electrolytic Copper Deposits , 1934 .