Multiple-Access Interference Plus Noise-Constrained Least Mean Square (MNCLMS) Algorithm for CDMA Systems

Since multiuser code-division multiple-access (CDMA) communications systems suffer significantly from multiple-access interference (MAI) and from classical white Gaussian noise, it is therefore necessary to consider their impact on the performance of these systems. It is well known that the learning speed of any adaptive filtering algorithm is increased by adding a constraint to it. In this paper, a constrained least-mean-square (LMS) algorithm, which incorporates the knowledge of the number of users, spreading sequence length, and additive noise variance, is developed subject to the new combined constraint comprising the MAI and noise variance for a synchronous downlink direct-sequence CDMA system. The novelty of this constraint resides in the fact that the MAI variance was never used as a constraint. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean-square-error criterion subject to the variance of the new constraint (MAI plus noise). This constrained optimization technique results in an (MAI plus noise)-constrained LMS (MNCLMS) algorithm. The MNCLMS algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints on MAI and noise variance. Convergence and tracking analysis of the proposed algorithm are carried out in the presence of MAI. Finally, a number of simulations are conducted to compare the performance of the MNCLMS algorithm with other adaptive algorithms.

[1]  B. Widrow,et al.  Stationary and nonstationary learning characteristics of the LMS adaptive filter , 1976, Proceedings of the IEEE.

[2]  Raymond H. Kwong,et al.  A variable step size LMS algorithm , 1992, IEEE Trans. Signal Process..

[3]  Azzedine Zerguine,et al.  Tracking analysis of variable XE-NLMF algorithm in the presence of both random and cyclic nonstationarities , 2005, 2005 13th European Signal Processing Conference.

[4]  Ali H. Sayed,et al.  A unified approach to the steady-state and tracking analyses of adaptive filters , 2001, IEEE Trans. Signal Process..

[5]  Ali H. Sayed,et al.  A time-domain feedback analysis of filtered-error adaptive gradient algorithms , 1996, IEEE Trans. Signal Process..

[6]  Azzedine Zerguine Convergence and steady-state analysis of the normalized least mean fourth algorithm , 2007, Digit. Signal Process..

[7]  Michael B. Pursley,et al.  Spread-Spectrum Multiple-Access Communications , 1981 .

[8]  Peter J. McLane,et al.  A fast adaptive algorithm for MMSE receivers in DS-CDMA systems , 2004, IEEE Signal Processing Letters.

[9]  Yongbin Wei,et al.  Noise-constrained least mean squares algorithm , 2001, IEEE Trans. Signal Process..

[10]  K. Senne,et al.  Performance advantage of complex LMS for controlling narrow-band adaptive arrays , 1981 .

[11]  Mohamed A. Deriche,et al.  A Unified Approach to BER Analysis of Synchronous Downlink CDMA Systems with Random Signature Sequences in Fading Channels with Known Channel Phase , 2008, EURASIP J. Adv. Signal Process..

[12]  Odile Macchi,et al.  Adaptive Processing: The Least Mean Squares Approach with Applications in Transmission , 1995 .

[13]  Neil J. Bershad,et al.  On error-saturation nonlinearities in LMS adaptation , 1988, IEEE Trans. Acoust. Speech Signal Process..

[14]  James S. Lehnert,et al.  Bit-to-bit error dependence in slotted DS/SSMA packet systems with random signature sequences , 1989, IEEE Trans. Commun..

[15]  Tareq Y. Al-Naffouri,et al.  Transient analysis of data-normalized adaptive filters , 2003, IEEE Trans. Signal Process..

[16]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[17]  Andrew J. Viterbi,et al.  On the capacity of a cellular CDMA system , 1991 .

[18]  Jack M. Holtzman,et al.  A simple, accurate method to calculate spread-spectrum multiple-access error probabilities , 1992, IEEE Trans. Commun..

[19]  Neil J. Bershad,et al.  Saturation effects in LMS adaptive echo cancellation for binary data , 1990, IEEE Trans. Acoust. Speech Signal Process..

[20]  Ali H. Sayed,et al.  A feedback approach to the steady-state performance of fractionally spaced blind adaptive equalizers , 2000, IEEE Trans. Signal Process..

[21]  Dayong Zhou,et al.  Hybrid filtered error LMS algorithm: another alternative to filtered-x LMS , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[23]  Tareq Y. Al-Naffouri,et al.  Transient analysis of adaptive filters with error nonlinearities , 2003, IEEE Trans. Signal Process..

[24]  On-Ching Yue Spread spectrum mobile radio, 1977-1982 , 1983, IEEE Transactions on Vehicular Technology.

[25]  J. Nagumo,et al.  A learning method for system identification , 1967, IEEE Transactions on Automatic Control.